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1. INTRODUCTION 

1.1. General 

This Final Report describes the complete research work that has been carried out starting 
1 April 1995, under Office of Naval Research SBIR Phase I contract no. N00014-95-C-0154, in 
the area of energetics of late chemical reactions of metals in nonideal underwater detonations. 

1.2. Background 

The reaction of metallic fuels with the detonation products in all explosives is poorly 
understood to this day, but there is much evidence, albeit indirect, that the exothermic reaction 
that consumes aluminum takes place over a much longer time scale than that which consumes, 
say, TNT, RDX, or HMX. The probability of this late time reaction is greater in underwater 
explosions because the inertial confinement of the explosive products by the vast mass of 
surrounding water is much greater than any confinement by metal cases of explosions in air. 
Metallic fuels, principally aluminum, have been added to underwater explosives, and the 
aluminum oxidation is greatly affected by the confinement. It is well known that the "bubble 
energy" - a uniquely underwater effect ~ increases, relative to the nonaluminized material, as the 
aluminum/oxygen ratio increases from 0 to 1. The "shock wave energy" reaches a maximum for 
an Al/O ratio of about 0.4 in some TNT/RDX mixtures. The aluminum content is used to fine 
tune the bubble and shock energies ~ which are related to underwater target damage ~ depending 
on the target. 

Metallized composite explosives provide the means of tailoring the chemical energy 
release rate in the detonation process because the metal additive is capable of reacting with the 
explosive's products to support both the propagation of the detonation wave and the unsteady 
flow in the release wave behind the detonation front. Because of this role of the metal in the 
detonation process, metallized explosives are said to be nonideal explosives; a consequence is 
that there are not predictive models for quantifying their behavior. In addition, because the 
amount of metal reacting to support the detonation is not known, and thermo-hydrodynamic 
codes for calculating Chapman-Jouguet (CJ) parameters for CHNO explosives cannot be used to 
predict detonation parameters in metallized explosives, the detonation process is also said to be 
nonideal. Consequently, the capability to tailor the energy release in metallized explosives for 
underwater applications depends on our ability to control the reactions of the metal in the 
nonideal detonation process. 

Metallized explosives are examples of composite explosives that are nonideal explosives, 
i.e, where mass transport between oxidizer and fuel is an important rate-determining process, 
unlike ideal explosives, which are molecular mixtures of fuel and oxidizer that are separated by 
extremely short distances, i.e., bond lengths. Because reaction rates in ideal explosives are so 
fast, explosive performance can be modeled as depending only on equilibrium states along the 
Chapman-Jouguet (CJ) isentrope behind the CJ plane, upstream of which all explosive is reacted. 
The modeling of nonideal detonations, i.e., detonations of nonideal explosives, is much more 
complicated, depending on the heterogeneity of the fuel/oxidizer mixture, diffusion rates, mixing 
distances, reaction times, and energy release rates, none of which are explicitly needed to 
describe ideal detonations. 

1 
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Ideal and nonideal explosives differ greatly in their failure diameter: failure diameters in 
the former are generally of the order of millimeters; those of the latter are in the centimeter range 
because of the heterogeneity and slow reaction rates of the composite explosives. 

The energy release processes in composites, while relatively slow, are far more complex 
than in ideal explosives. As a consequence, it is a difficult problem to couple these 
"microscopic" rate-determining processes to the "macroscopic" compressible fluid dynamics of 
the complex detonation products and the "early" compressible and "later" incompressible flows 
in the water. 

For ideal and nonideal detonation processes, the flows in the steady-state reaction zones 
satisfy the Rankine-Hugoniot (RH) jump conditions and become sonic at the CJ point where the 
energy release rate becomes zero.1'2 But whereas all the available chemical energy is used to 
support the steady-state flow in the ideal detonation, it is not used in the nonideal detonation 
because the time scale for the decomposition of the explosive is significantly different from the 
time scales of the reactions of the metal with the detonation products. The detonation parameters 
in the nonideal detonation thus can be tailored by controlling the amount of metal that reacts in 
the steady-state reaction zone. 

For both detonation processes, the flows in the unsteady release waves behind the CJ 
planes are governed by the differential equations expressing the conservation of mass, 
momentum, and energy for inviscid, adiabatic flow. The release wave in the ideal detonation 
process is isentropic and is, thus, represented in the specific volume-pressure v-p plane by the 
isentrope of the detonation products passing through the CJ point. Because of metal reactions, 
however, the release wave in the nonideal detonation process is not isentropic and is, thus, 
represented in the v-p plane by a reactive release adiabat passing through the CJ point. 
Moreover, the entropy increases with volume along such a reactive adiabat because entropy is 
produced by the reactions of the metal with the products of the explosive. Thus, the energy 
release rate for underwater applications can be tailored by controlling the reactions of the metal 
with the explosive's products in the release wave. 

Because the areas under the CJ isentrope and CJ release adiabat in the v-p plane are 
directly related to the amounts of available chemical energy in the explosive compositions, the 
energy release rate in the release wave can be tailored by controlling the pressure when the metal 
begins to react as well as its subsequent rate of reaction. In other words, the shapes of the 
reactive release adiabats can only be changed by varying both the onset and subsequent rates of 
the metal reactions in the release wave. 

It follows from the discussion of the detonation process that ideal detonations can be 
adequately described by thermodynamic processes, but nonideal detonation cannot because the 
energy release rate is governed by kinetic processes with different time scales. Semi-empirical 
thermo-hydrodynamic studies of nonideal explosives, of the type performed by Mader3 and 
Cowperthwaite,4 provide phenomenological information about the energy release rate, but do not 
provide the information and knowledge required to control it. Thus, a more basic approach must 
be taken to provide a means of controlling the energy release rate in metallized explosives. In 
such an approach, we must first identify the most important kinetic processes governing the 
energy release rate and then develop realistic models for them, containing parameters related to 
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the physical and chemical properties of the explosive compositions. 

1.3. Dividing Up the Kinds of Explosives 

Explosives are generally divided into two classes, ideal and nonideal.5 We have noted 
that ideal explosives may be defined as those in which fuel and oxidizer are homogeneously 
mixed at the molecular level. That is to say, the irreducible fuel element and the irreducible 
oxidizer element are either, within the same molecule in a grain or crystal of identical molecules, 
or, are at least nearest neighbors in separate molecules in a bimolecular crystal or grain. Ideal 
explosives are characterized by short reaction zones and exhibit little or no delayed reaction. 
Nonideal explosives are a broader class usually composed of grains of ideal explosive 
homogeneously mixed with other grains of fuel and/or oxidizer. They may behave more or less 
like ideal explosives depending on whether they contain more or less ideal explosive 
constituents. They are composite explosives, exhibit longer reaction zones, and in general 
considerably more "delayed" reaction. 

For the purpose of modeling nonideal explosives, we divide these into two categories: the 
first category, which we call totally nonideal explosives comprises explosives in which the fuel 
and oxidizer each appear only in separate grains. Examples are AP/wax and AP/A1, without any 
energetic binder. It must be emphasized that such mixtures are not practical for service use, but 
they have been tried out as experimental mixtures and their detonation velocities and sensitivities 
have been measured by D. Price, et al.6J (The AP/A1 mixture fell in Price's Category 2 
classification.) Their utility is that they are excellent examples of mixtures for which the gross 
heterogeneity, diffusion rates, mixing distances, etc. can be modeled unencumbered by any rapid 
reaction of an explosive molecule containing both fuel and oxidizer. It is this category of 
nonideal explosives that has been emphasized in this Phase I theoretical effort, which is 
described below in Sections 2 and 3. 

The second category, which we call somewhat ambiguously nonideal explosives, are a 
mixture of an ideal explosive and at least one separate fuel or oxidizer, e.g., PBXN-102 
(HMX/Al/binder) and PBXW-115(Q) (RDX/AP/Al/binder). Thus, this category can be viewed 
as an admixture of ideal and totally nonideal explosives. Most practical explosives fall within 
this category, particularly those used by the Navy. Model development for this category of 
nonideal explosive is left for a future Phase II effort. 

The field of nonideal explosives has been extensively investigated for many years, 
particularly by the underwater explosives community. As early as 1918, German studies showed 
that the addition of 15-20% aluminum increases underwater performance. There exists a large 
number of Navy-developed plastic bonded explosives containing ammonium perchlorate and/or 
aluminum: PBXC-117(Q), PBXN-102, PBXN-103, PBXN-105, PBXN-109, PBXW-107(Q), 
PBXW-114(Q), PBXW-115(Q), all of which are cast; PBXN-4, PBXN-7 (Type I), all of which 
are pressed; PBXN-201, which is extrudable and injection moldable. 

E. Anderson provides an excellent review of explosives, and in particular the effects of 
explosive composition ingredients, charge diameter, failure diameter, and confinement on 
performance of nonideal explosives. The Detonation Symposia provide an extensive literature 
on nonideal detonations, including some of the important results from the Lawrence Livermore 
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National Laboratory. 

Recently, some very interesting small-scale laboratory tests by P. Miller and R. Guirguis 
were performed comparing product gas expansion rates against a column of water for ideal and 
nonideal aluminized explosives. JWL equation of state incorporating a time-dependent late 
energy release was adjusted to reproduce the experimental nonideal explosive results. These 
authors also calculated the effects of late chemical reactions on the bubble oscillation and 
pressure pulse induced in water by nonideal explosives. Their energy release was governed by the 
rate law dA/dt=a(l-A,)1/2pI/6, where X, p, t, and a are, respectively, the progress variable, pressure, 
time, and a constant. 

1.4. Current Modeling Effort 

This report describes a preliminary model of kinetic and thermo-hydrodynamic processes 
that define the nonideal detonation of a totally nonideal explosive: an AP/A1 mixture. 

Section 2 presents a thermo-hydrodynamic description of reactive explosive compositions 
containing aluminum and, in particular, a description of the nonideal detonation process in 
ammonium perchlorate/aluminum and CHNO explosive/Al compositions. The specific energy 
relationships for these reacting compositions are presented in which Mie-Gruneisen equations of 
state are derived, including the temperature, and used for the solid components. Also the 
equations of steady state detonation in AP/A1 compositions are presented. 

In Section 3 we present a theory describing the kinetic processes by which A1/A1203/AP 
products react. Key here is the application of the phenomenon of anomalously high ionic 
conduction, which are exhibited by the ß-aluminas, through "tunnels" through which cations can 
move freely. This provides a plausible explanation of events in Al/explosive reactions. 
Statistical mechanical concepts are employed to provide reaction rate equations for Al and AP. 

The theoretical results of Sections 2 and 3 provides a preliminary physical model based 
on first principles, which will be integrated into a compressible flow code in the next phase of 
this work, which is to improve, extend, and validate the model. 
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2. THERMO-HYDRODYNAMICS OF REACTING EXPLOSIVE MIXTURES 
CONTAINING ALUMINUM (Al) 

In this section of the report, we formulate a global thermodynamic description of reacting 
explosive compositions containing Al. Such a description is required in order to perform 
analytical and numerical studies of the role played by Al in the nonideal detonation process in 
ammonium perchlorate (AP)/A1 compositions as well as CHNO explosive/Al compositions. 

In Sections 2.1 and 2.2, we construct the specific energy e relationships for reacting 
AP/A1 and CHNO/Al compositions with their solid components governed by generalized Mie- 
Gruneisen (MG) equations of state. These constructions must be based on the mass balance 
equations for the decomposing explosive and the Al reactions because the Al combines with 
oxygen-containing products of the explosive to form aluminum oxide A1203. We also derive the 
mass balance equations for Al spheres reacting with oxygen to form an outer coating of A1203. 

In Section 2.3, we presented the particular MG EOS that were constructed for AP, Al, and 
A1203, and the EOS used for the explosive's products. 

In Section 2.4, we consider steady-state (SS) detonation waves, and the relationship 
between the SS reaction zone length and reaction time in AP. We also develop a prototype 
model for SS, nonideal detonation in a CHNO/Al composition to provide a better understanding 
of the nonideal detonation process in explosive compositions containing Al, and demonstrate 
why global kinetic expressions must be constructed for the Al reactions. A procedure for 
constructing such a global kinetic expression will be presented in the next Section 3 of this 
report. 

2.1. A Specific Energy Relationship for a Reacting AP/A1 Mixture 

Because of the complex nature of reactive explosive mixtures in the 10-400 kbar region 
treatments of detonation phenomena must be based on assumptions regarding the significant 
chemical and physical processes. Here, our formulation of an e-relationship for AP/A1 mixtures 
with compressible, condensed components is based on the following assumptions: 

A. 1.     The AP decomposes to form a mixture of products with a fixed composition 
containing oxygen (02), nitrogen (N2), water (H20), and chlorine (Cl2). 

A.2.     The AP produces enough 02 to react with all the Al in the AP/A1 mixture. 

A.3.     The A1203 produced by the reaction of Al and 02 can be either solid oc-Al203 or y- 
A1203, depending on the thermodynamic state. 

A.4.     Each constituent in the reacting AP/A1 mixture has the same pressure p and is 
governed by its own equation of state (EOS) relating e, p, and specific volume v. 

It follows from A.l and A.3 that our relation for e must contain two reaction coordinates, 
say A, and X2, to account, respectively, for the decomposition of the AP and the reaction of Al 
and 02 to form solid A1203. In addition, we must account for the formation of either oc-Al203 or 
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Y-A1203 and formulate a condition to determine when one is formed and not the other. Such a 
condition will be formulated later when we consider the EOS of A1203. At this stage, it should 
also be noted that we will not consider melting of either the Al or the solid A1203. 

When mixture rules for the total internal energy Em and volume Vm of such an AP/A1 
composition are specified, these assumptions allow us to formulate an e-relationship for this 
composition in terms of p, the specific volumes of its components, and the reaction coordinates 
A] and X2. Our formulation of such an e-relationship, here, will be carried out in two steps. In 
the first step, we will define the reaction coordinates Xx and A2 and derive equations for the 
masses of the components in our reacting AP/A1 mixture in terms of Xx and X2. In the second 
step, we will use the mixture rules for Em and Vm, and the e=e(p,v) EOS of the components to 
derive our equation for e. 

2.1.1. Mass Balance Equations for an AP/A1 Composition 

We consider an AP/A1 composition with an initial mass M0, an initial mass fraction of 
AP, a^p = m£p /M0, and an initial mass fraction of Al, ocA1 = mA1 /M0, and also recall that it is 
customary for such a mixture to set M0=100g. To write the mass balance equations for such a 
mixture subject to A.l and A.3, we must consider the following chemical reactions: 

NH4 Cl 04 = 02 + 2H20 + »/2N2 + lhC\2 (R. 1) 

2A1 + 3/2 02 = (A1203X, i=l or 2 (R.2) 

with i=l and i=2 used, respectively, to denote a-Al203 and y-Al203. We first let M; denote the 
molecular weight of a species Si5 and see from (R.l) and R.2) that m^, /MAP > 3mA1 /4MA1 is the 
condition for our composition to satisfy A.2. We next let n^ denote the mass of a species S; and 
write the law of definite proportions for (R.l) and (R.2) with extents of reaction %x and £2 as 

= d\x (2.1.1) 

with 

dmAp _  dmo2   _    
dmH2o _ dmci2 

V*Ma2 

_dmN2 

MA? M02               2MH20 V*MN2 

dmAl          dm2
0i 

dmli2o3 

=   <%2 
2M*      1M0 

2      2 

M
Al203 

dm~   = dmn u2                    ul 
+ dmn u2 

(2.1.2) 

(2.1.3) 

Here the superscripts 1 and 2 refer to the respective equations, R.1 and R.2. 

Formally integrating these equations and introducing the reaction coordinates 

MAp 2MAI 
Xi  = Si— and   K = ^2-^T> 

mAi 
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and the mass fractions 

2M
H2O 

Mo2 
M

N2 
Ma2 2MM 3M 

  = a, ,—- = a2 , l- = a3 , 2- = a4 , 4- = ßt , 2- = ß2 
MAP MAP 2MAP 2MAP MA120, 2MA1203 

gives the equations for the masses of the species in our reactive AP/A1 mixture as 

mAp = »id-X,) (2.1.4) m0i = m^  - m°Al ß^/ß, (2.1.8) 

mH20   =   mAPaA (2-1-5) ^=mi1_;i2) (2-1-9) 

mNi = m>3A1 (2.1.6) «j^ = {m*Al /ß,)^-^) (2.1.10) 

wc/2 
= «ia4^i (2-L7) 

with TMA\ 0 used to denote the mass of (A1203)S. It follows from these equations that the masses 
of the condensed components are defined by Eqs. (2.1.4), (2.1.9), and (2.1.10) and that the mass 
of the fluid component, mf, is obtained by summing Eqs. (2.1.5) through (2.1.8). We will now 
present the mixture rules and the EOS used in the formulation of an e-relationship for our 
reacting AP/A1 mixture. 

2.1.2. Mixture Rules and Equations of State 

Here, because it is convenient to express mixture rules in terms of extensive variables, we 
write Em and Vm for our AP/A1 composition in terms of the extensive internal energies and 
volumes of its components as 

Em   = EAP+EAl+Ef+^Ell2o)i      ' = 1   or 2 (2.1.12) 

Vm  = ^AP^A^f^koh     ' = 1  or 2 (2.1.13) 

In this case, the specific internal energy and volume of the mixture are related to Em and Vm by 
the equations, e=Em/M0 and v=Vm/M0. We now introduce the EOS used to calculate the energies 
on the right-hand side of Eq. (2.1.12). 

We write the e=e(p,v) EOS for the condensed components in Gruneisen form as 

<AP = ^hf\p + T^ + voP8AP(V) (2.1.14) 
AP 

PVAl Al      ,__ 
eAl   =   ^~   +   V0 gAfy) (2.1.15) 

lAl 

0 ' Pv- 
*lil0i  = (Ahf)A,2o3 

+ Y + voS,W      '' = 1  or 2 (2.1.16) 
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In writing these equations, we have used (Ah% to denote the specific heat of formation of 
a species Sj and have reduced their number by using i as a subscript or a superscript with the 
values 1 and 2, respectively, to denote oc-Al203 and Y-A1203.   In addition the g terms are written 
as functions of the reduced volume V=v/v0, with the understanding that V in gj(V) denotes 
V=(v/v0)j. The energy terms for the condensed components in Eq. (2.1.12) can readily be 
obtained by multiplying Eqs. (2.1.14), (2.1.15) and (2.1.16) by the expressions for their 
respective masses given by Eqs. (2.1.4), (2.1.9), and (2.1.10). 

We write the Ef=E(p,Vf, mf) EOS for the fluid as 

Ef = mH20(Ahf\0 + Vfi-n~ gf (V)) , (2.1.17) 

where the reduced volume V in gf at this stage need not be defined. Only the specific heat of 
formation for H20 need be included in Eq. (2.1.17) because the heats of formation of all the other 
fluid constituents are zero. We can now derive a specific energy relationship for our AP/A1 
mixture as follows. 

2.1.3. Derivation of the Specific Energy Relationship 

We first derive an expression relating Em and Vm by substituting the equation for Ef 

obtained by eliminating Vf between Eqs. (2.1.13) and (2.1.17) into Eq. (2.1.12). The result of 
these operations leads to the equation 

E
m = ™^(AVV+^+^+^^ • (2.1.18) 

We then multiply Eqs. (2.1.14)-(2.1.16) for the specific energies e^, eA1, and eA\ 0 of the 
condensed components by the expressions for their respective masses in Eqs. (2.1.4). (2.1.9) and 
(2.1.10) to obtain expressions for E^, EA1, and EA\ 0 , substitute these expressions into Eq. 
(2.1.18), and collect similar terms. The equations obtained in this way for the heat of formation 
terms denoted by Ec, the pressure terms denoted by Ep, and the remaining volume terms denoted 
by Eg are given below. 

Collecting the specific heat of formation terms for the components leads to the following 
equation: 

0 m 
Ec = m^Ah^m^la^Ah^-iMX]^ K^f^o, ,   '=1 or 2 . (2.1.19) 

We now let E° and Q, denote, respectively, the heat of formation of our AP/A1 composition and 
the chemical energy liberated when 1 g of AP decomposes according to R.l. We also let Oj 
denote the chemical energy liberated when 1 g of Al reacts to form oc-Al203 (i=l) or y-Al203 (i=2) 
according to R.2. We then write Eq. (2.1.19) in terms of these parameters as 

Ec = E^-mlX^-mXQi  • (2.1.20) 

Collecting the pressure terms leads to the equation 



ENIGTR95-1 

V
mP

AAPm!p„     ,   N ,    AAl     0„     ,   , M^V 
E  =p—+ v-K»AP+p—mAV-KKi + —^—V, > (2-1.21) n n n npj 

where AAp = (nlTAp-\), AM = (n/TAl-l), and   A = (n/T.-l) . 

Collecting the remaining volume terms leads to the equation 

Eg = -Vmg{y)+mlP(\-\)[VfgAP{V)+vApgf(y)\ 

+ m°Al{\ -K)lvtlgAl(y)+vAlgf (V)] (2.1.22) 
+ ri/ß1)Wi(fo

+v,?/(n] 
The equation for e for our mixture is obtained by adding Eqs. (2.1.20), (2.1.21), and 

(2.1.22) and dividing by M0. Because of space limitations, it serves our purpose here to set gf=0, 
and n=k-l and only present the energy relationship when the products are assumed to be 
polytropic. In this case, the e-relationship can be written as 

e~ex = _Vr*W 
+^T[V+^(1 ~Ai)v^+^°<(1 -^V

AI
+A
X^ (2.1.23) fc-1 

where qx = aAPQ^ q' = a°APQ', A\P = aAPAAp, A*Al = a°AlAAl, A? = cc^/ß,, 

0 „ 0       AP 0 0     Al j        0 0      i.o 
aAP = aAPvo   >  aAi = aAivo >^d «/   = «WPi ■ 

At this stage, Eq. (2.1.23) cannot be used to calculate the specific energy of our reacting 
AP/A1 mixture because we have no prescription for calculating the specific volumes of the 
condensed components when p, v, Al5 and X2 are known. A prescription to address this difficulty 
will be presented after we have derived the mass balance equations for reacting Al particles in the 
next section. 

2.1.4. The Mass Balance Equations for Al Spheres Reacting with 02 to Form an 
Outer Coating of A1203 and the Reaction Coordinate A2. 

We consider a shocked sphere of Al with an initial radius rH, specific volume v", and 
mass w,. The initial mass, specific volume and radius of this Al sphere are then related by the 
equation 

4*4 
3vl 

(2.1.24) 

We then assume that a mass fraction of Al, Aw°, has reacted with the 02 in the 
surroundings to produce a sphere of radius R. This sphere consists of an outer shell of A1203 

with mass w2, specific volume v2 and a thickness t, that covers an inner core of Al with a radius 
R-/1. In this case, the mass of Al in the inner core, wl5 satisfies the equations 
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wx  =  '- =  -(1-A) , 
; '\3       47tr 

vi 3v l 
(2.1.25) 

which gives the following equation for A: 

H 

X = i—L(*_L)3 . (2.1.26) 
vi      ^ 

We note that Eq. (2.1.26) satisfies the conditions, AH=0, when /i=0 and R=rH, and A=l when the 
thickness of the A1203 coating equals the radius of the sphere. We now use the mass balance 
equation from R.2 to derive another equation for R and thereby obtain the relationship between /; 

and A. We accordingly integrate the equation obtained by setting mA1=w„ M^M,, mA\ 0 =wi
2, 

and MAl 0 = M2 in Eq. (2.1.2) to obtain the following equations relating wl and w2: 

w?-w1=2M,^2 (2.1.27) 

w2 = M2£2 (2.1.28) 

Eliminating £2 between Eqs (2.1.27) and (2.1.28) then gives the equation 

Aw0 = (2M/M2) w-, (2.1.29) 

which we rewrite as 

4TOg   =   2^   4TI   R^-jR-Vf 

i   H M      3 ' 3Vj m2       D v2 

(2.1.30) 

The combination of Eqs. (2.1.26) and (2.1.30) then leads to the following equation relating R and 

R=rH[^X + A(i-X)]*, (2131) 

where V^VJMJ denotes the molar volume of Al and V2=v2, M2 denotes the molar volume of 
A1203. Setting A=l in Eq. (2.1.31) gives the final radius of the sphere when all the Al has reacted 
to form A1203. The combination of Eqs. (2.1.26) and (2.1.31) then gives the equation relating /' 
and Aas 

- = [-V + -^-W3 " (-^)1/3d-^)I/3 ■ (2.1.32) 

Having introduced the reaction coordinate A for a single Al particle, we must now relate 
this coordinate to the global coordinate A2 defined by the equation mA1=mA1(l-A2). For simplicity, 
we will assume that our AP/A1 mixture contains NA1 particles of Al with the same initial radius r0, 
and write the equation for mA1 as m^N^rao/Sv^1. We now multiply Eq. (2.1.25) by NA1 to 

10 
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obtain the total amount of unreacted Al in our mixture, when the covering layers of A1203 have a 
thickness l1, as 

4%N r 
mAi = N

AI
W

I =  Ajr C1^) • (2.1.33) 

Q Al "1 ET 

The mass balance condition (r0/v0 ) = (rff/vj ) then allows us to rewrite Eq. (2.1.33) as 
mAi=mAi(i"^) and show that X=X2 when all the Al particles in our AP/A1 mixture are assumed to 
have the same size. 

2.1.5. Implementation of the e-Relationship. 

Our prescription to make Eq. (2.1.23) into a working relationship is based on the premise 
that the components of our reacting AP/A1 mixture do not attain thermal equilibrium during the 
detonation process. Consequently, because an explicit treatment of heat conduction is beyond 
the scope of Phase I tasks, addtional assumptions must be made about the transfer of heat among 
these components. Here, we will treat the AP and Al in a similar way, and assume that no 
appreciable amount of heat is transferred into either the interior of a burning AP grain or the 
interior of a reacting Al particle, as the reacting AP/A1 mixture expands. In this case, a grain of 
AP and a particle of Al entering the shock are thereafter constrained to their respective isentropes 
determined by their thermodynamic states attained at the shock front. In contrast to this 
treatment of AP and Al, we assume that the heat transfer process between A1203 and the fluid 
component as so efficient that the A1203 coatings on the Al particle attain thermal equilibrium 
with the decomposition products of the AP. The consequences of these assumptions, which 
make Eq. (2.1.23) a workable e-relationship will be considered later. 

2.2 A Specific Energy Relationship for a Reacting CaHbNcOd/Al Mixture. 

Our formulation of an e-relationship for a CaHbNcOdAlf composition follows a procedure 
similar to that used in our formulation of the e-relationship for AP/A1 mixture. To be more 
specific, we adopt the assumption A.3, apply assumption A.4 to the CaHbNcOdAlf system, and 
make the following assumptions about the decomposition of the explosive CaHbNcOd, and the 
reactions of its products with the Al: 

A. 5 The CaHbNcOd explosive decomposes to give products with a fixed composition, as 
prescribed, by Kamlet8. 

A.6 The Al reacts with the C02 and H20 produced by CaHbNcOd, and the H2 liberated 
from the H20 reacts with the C in the explosive's products to form hydrocarbons. 

2.2.1. Mass Balance Equations for a CaHbNeOdAlf Composition 

We again consider a mass M0=100g of explosive mixture with an initial mass fraction of 
X, oc°=m°/M0, and an initial mass fraction of Al, a^m^/Mo. It is clear for this X/Al mixture that 
mA1=fMA1 and that m°=M0-fMA1. Following Kamlet, we write the equation for the decomposition 
of our explosive component as 

11 
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CaHbNcOdAlf - b1H20+a1C02+c,N2+a2C+fAl (R.3) 

with b^b/2, a!=d/2-b/4, cx=dl, and a2=a-(d/2-b/4). To consider the heat produced by (R.3), we 
denote the heat of formation of a mole of a species S as (AH°f)s and write the standard heat of 
decomposition of X in the composition, Qx, as 

Qx =  -[b^HX20+a^Hü
f)C0-^HQ

f)x] ■ (2.2.1) 

and its specific heat of decomposition as 

q' = -jr^MM^hH^^co^hco-MJ<^^ ■ (2.2.2) M 
X 

because Mx=mx. 

We now consider the reactions of Al with the explosive's products. We write the 
equation for the Al in the composition reacting with the C02 as 

fAl+¥C02 = f-Aip^-fCO . (R.4) 

Examination of (R.3) and (R.4) then shows that all the Al in the composition can react with the 
C02 when a,x >3f/2. We write the equation for the Al in the composition reacting with the H20 as 
and similarly see that the condition for all the Al to react with the H20 is b,^3f/2. Because (R.5) 

fAl+¥H2o = lAl203+±fH2 (R.5) 

produces H2, we must also consider the reaction of the H2 with the C produced by the explosive. 
For simplicity, we only consider one reaction between H2 and C and write this reaction as 

fa+fC = £c2H6 (R.6) 

Examination of (R.3) and (R.6) then shows that the condition for all the hydrogen produced by 
the H20 to react with the C is a2>f. On the added assumption that the H2 produced by the H20 
reacts immediately with the C produced by the explosive, we combine (R.5) and (R.6) and write 
the equation for this A1-H20-C reaction as 

l+\fH20+fC = UAio\+Lc,Hk fAl+-fH20+fC = j-(Al203)+^C2H6 (R.7) 
L Z s    2 

and the equation for its standard heat of reaction, QA1? as 

Q'AI = -{KKW(K)^3-
3
(KM (2.2.3) 

To be more specific about such X-Al compositions, we consider a composition similar to 
H6 with a=1.8869, b=2.6123, c=1.5796, d=1.9667, and f=0.7827. Because a,=0.3303 and 
3f/2=1.1740, we see that 3f/2>aj for this composition, and X does not produce enough C02 to 
consume all the Al. Alternatively, because b^l.3061^172, and a2=1.5566>f, the H20 produced 
by X can consume all the Al, and the C produced by X can react with all the H2 product from the 
H20 by (R.3). For these reasons, it is convenient here to neglect the reaction of Al and C02 in 

12 
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this composition and only consider the two global exothermic reactions, (R.3) and (R.7). 

In order to account for (R.3) and (R.7) in the detonation process, we introduce the extent 
£3 for (R.3), the extent of reaction £7 for (R.7), and write the law of definite proportions for these 
reactions as 

dms        dmH0 dm dm dm* 
■—- =  — =  =  =  = d$3 (2.2.4) 
Mx bXMHl0 

C1MN2 
aiMC02 

a2MC 

dml  = _dmAL = _ dmli0 ^    dm^ ^    dmc^    = 

fM 1M 3 1 1 7 (2.2.5) jmc jmM 3_ \_ _J_ 

2J
M

H2O        2
JmAi2o3        2

JMC2H6 

with 

dmH2o 
= dmH2o 

+ dml2o (2.2.6) 

dmc = dml + dmc (2.2.7) 

Formally integrating these equations, setting E,3=X3 and £7=A7, and introducing the mass 
fractions 

cxM                   b^M                     axM aM 
a, =  , a, =  — , a, =  , a. = , 

1 0 2 0 3 0 4 0 
mx mx mx mx 

allows us to write the equations for the masses of the species in our reactive X/Al mixture as 

m o. 
x = «;d -K) 

0        o m„   = /M  OC.A, N2 x     1    3 

mco2 
= mxa3

k3 

(2.2.8) mc = mxa4X3 - ßfcX7 
(2.2.12) 

(2.2.9) f 
m„      = —M      X 

C2W6             9           2    6 

(2.2.13) 

(2.2.10) mAl   =   mAlil -*7) 
(2.2.14) 

(2.2.11) 
™A\o,   =   ^MA1203K 

(2.2.15) mH20   =   ™XA3   -   -WH^I 

The Eqs. (2.2.8), (2.2.14), and (2.2.15), respectively, give the masses of the condensed 
components X, Al, and A1203 in terms of the reaction coordinates, and the equation for the mass 
of the other species can be obtained by summing Eqs. (2.2.9) through (2.2.13) as 

m
P = mlK-fi-MH2o

+Mc-—C2H^i • (2.2.16) 

To simplify our treatment here, but account for the presence of solid C in the detonation 
products, we make the additional assumption that the species C02, H20, N2, and C2H6 form a 

13 
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polytropic fluid mixture with an index k and that C is a polytropic solid with the same index. We 
can then proceed with our formulation of an e-relationship for our X/Al mixture. 

2.2.2. Mixture Rules and Equations of State (EOS) 

We again use Em and Vm to denote the internal energy and volume of our X/Al 
composition, and express Em and Vm in terms of the internal energies and volumes of its 
components as 

We then write the e=e(p,v) equation of state (EOS) of the explosive as 

v
m = yx+Vf+vM+<yko)t ■ (2.2.18) 

0      Pv 

ex = (Ahf)x+j^+v0
xgx(V) , (2.2.19) 

X 

use Eqs. (2.1.15) and (2.1.16) to describe Al and A1203, and write the Ef=E(p,Vf, nij) EOS for our 
products' component as 

Ef = Vjnji&hfylU- , (2.2.20) 

with j=C02, H20, C2H6, and mco  , mHO , and mCH defined by Eqs. (2.2.10), (2.2.11), and 
(2.2.13). Our derivation of a specific energy relationskip for the X/Al mixture now parallels that 
for the AP/A1 mixture. 

2.2.3. Derivation of the Specific Energy Relationship 

We first derive an expression relating Em and Vm by substituting the equation for Ef, 
obtained by eliminating Vf between Eqs. (2.2.18) and (2.2.10), into Eq. (2.2.17). These 
operations give 

—-), + a./AÄ/)y + — 
t" r l" Al t r ■ AUU, _ .       0 J (2.2.21) 

We then multiply Eqs. (2.2.19), (2.1.15), and (2.1.16), for the specific internal energies of the 
condensed components, by the expressions for their respective masses given in Eqs. (2.2.8), 
(2.2.14), and (2.2.15), to obtain expressions for Ex, EA1, and (£/z 0 )., substitute these expressions 
into Eq. (2.2.21), and collect similar terms. The resulting equations for the heat of formation 
terms denoted by Ec, the pressure terms denoted by Ep, and the remaining volume terms denoted 
by Eg are given below. 

The equation for Ec is obtained as 

Ec = <-ßA-ßA > (2-2.22) 
with E°=m°(Ahf)x because (Ahf)A1=0. The equation for E is obtained as 

14 
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E
P = ^[^^A(l-V/V)l-^/^^] , (2.2.23) 

with Ax=->—- -1 , AAl=-*——-\ , and A^—-1 defined previously for the AP/A1 
x Al i 

composition. The equation for Eg is obtained as 

Eg = V0\l-X3)gx(V) + vf(l-X7)gAl(V)+{-MAl2Ov'X7gi(V) , (2.2.24) 
2 

with V0
x=m°v0

x and V^mAlv^' 

Finally, adding Eqs. (2.2.22), (2.2.23), and (2.2.24) together and dividing the resulting 
equation by M0, gives the e-relationship for our X/Al mixture as 

o 
e-e„ 

with 

~?3^3 ~<1AIK 

+ ^[v+^°(1 -KK
+A

AI(
1
 -KK,+A?KV,1 (2.2.25) 

+ K°(l -X3)gx(V)+a^l -XjgJV) +a,°A,7g/.(D] 

0 i:     _ i ,., . 0      .      0 
«3   =   ax°x  »   9A1=QAI

/M
0   > Ax =A

x
ax   > 

A
1I=

A
AA  •  Ai=AifMALoJ2M0   > 

U U     X U     Al U     f., lM1. 

«^ =axV0    >   aAlV0     »   fl,  =fMALO,V0/2M( 0 

Having derived e-relatinships for AP/A1 and X/Al mixtures in terms of general MG EOS, we 
must now formulate the particular EOS that are needed for their implementation. 

2.3 Equations of State for the Components in AP/A1 and X/Al Compositions. 

Because Al is present in both of our explosive compositions, we will formulate an EOS 
for Al before considering the EOS of the other components. 

2.3.1. A Complete Equation of State for Al 

Difficulties arise in modeling the reactions of a metal with an explosive's products behind 
the detonation front when the EOS of the metal is based on shock wave data and is, 
consequently, valid only for values of the specific volume v, v<v0=pö', where p denotes the 
density and the subscript o denotes the unshocked state. An approach to resolve this difficulty, 
which is different from the one presented here, has been formulated by J.W. Enig9. To be more 
specific about this difficulty, we consider an e=e(p,v) EOS based on the assumption that the 
Gruneisen parameter T is only a function of v. (The thermodynamic conditions for this 
assumption to be valid will be presented later.) In this case, 

(6e/ap)v = v/T(v), (2.3.1) 
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and the e=e(p,v) relation follows by formally integrating Eq. (2.3.1), yielding 

e = pv/T(v)+g(v), (2.3.2) 

where g(v) is an arbitrary function of v. When T(v) is known, the knowledge of eR(v) along a 
reference curve pR= pR(v) in the (v-p) plane allows us to determine g(v) over the volume range, 
V!<v<v2, spanned by pR(v) and to rewrite Eq. (2.3.2) as 

e-eR(v) = (p-pR(v))v/T(v) for v, < v< v2. (2.3.3) 

Because shock wave studies of a material provide its Hugoniot curve in the (v-p) plane, 

PH = PH(V,V0) for v<v0, (2.3.4) 

and because the energy change along a Hugoniot curve is defined by the Hugoniot relation 

2(eH-eo) = pH(Vo-v), (2.3.5) 

it is convenient to write an e=e(p,v) EOS calibrated with shock wave data as 

e-eH = (p-PH)v/T(v). (2.3.6) 

When writing an e=e(p,v) EOS in this form, one must remember that its validity is limited 
strictly to the volume range, v<v0, spanned by the PH

=
PH(

V
*
V

O) Hugoniot curve. 

To provide more background for our EOS task, we now discuss Debye's approach to 
solids to establish thermodynamic conditions for T to be a function of v. 

2.3.1.1. Thermodynamics of a Debye Solid 

We let T and u^v) denote, respectively, the absolute temperature and the specific internal 
energy along the zero degree (T=0 K) isotherm, and write the equation for the specific Helmholtz 
free energy f as 

f=Uo(v)+TF(0/T), (2.3.7) 

where the Debye temperature 0 is assumed to be a function only of v and is related to the 
maximum frequency that can be propagated in the lattice wk, by the equation 0=(h/k)o)m/2Tr. 
Equation (2.3.7) is used to derive an equation for T/v, rewritten as 

VN = (dp/dTyCv, (2.3.8) 

where Cv denotes the specific heat at constant volume. 

To obtain the equation for (dp/5T)v, we first differentiate Eq. (2.3.7) partially with respect 
to v to obtain the following equation for p: 
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p = p0(v) -F'd0/dv (2.3.9) 

where p0(v)=-du0/dv denotes the pressure along the zero degree isotherm and F'=dF/d(0/T). We 
then differentiate Eq. (2.3.9) partially with respect to T to obtain the equation for (5p/5T)v as 

(dp/3T)v = (0F7T2)d0/dv (2.3.10) 

with F"=d2F/d(0/T)2. To obtain the equation for Cv, we differentiate Eq. (2.3.7) twice with 
respect to T to obtain the following equations for the specific entropy s and its derivative 
(ds/3T)v, 

s = -F+(0/T)F' (2.3.11) 

(5s/aT)v = -(02/T3)F" (2.3.12) 

and we then use the identity T(ös/dT)v=Cv to obtain the equation for Cv as 

Cv=-(0/T)2F" (2.3.13) 

The combination of Eqs. (2.3.8), (2.3.10), and (2.3.13) then gives the equation for V as 

T =-(v/0)d0/dv, (2.3.14) 

which shows that T is a function only of v. 

The assumption that T is a function of v is thus valid when the contribution of the lattice 
vibrations to fare realistically accounted for by the dependence of the Debye temperature 0 on v. 

To complete our thermodynamic discussion of EOS with T=r(v), we combine the 
identity e=f+Ts and Eqs. (2.3.7), (2.3.9), (2.3.11), and (2.3.14) to derive the e=e(p,v) EOS for a 
Debye solid as follows. We first substitute Eqs. (2.3.7) and (2.3.11) into the identity for e to 
obtain the equation 

e=uo(v) + 0F', (2.3.15) 

which is the complete e=e(s,v) EOS for the solid because 0 is only a function of v and s is only a 
function of 0/T. We combine Eq. (2.3.11) with the Eqs. (2.3.9) and (2.3.4) to obtain the e=e(p,v) 
relation as 

e = u0(v) + (p-p0(v))v/T (2.3.16) 

Comparing Eqs. (2.3.16) and (2.3.3), then shows that the natural reference curve in the (v-p) 
plane for the Debye solid is the zero degree isotherm, and comparing Eqs. (2.3.16) and (2.3.2) 
shows that the function g(v) for the Debye solid is 

g(v) = u0(v) - 0"1(dv/d0)duo/dv (2.3.17) 
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2.3.1.2. Approach to the EOS Task 

Our approach to formulate a realistic EOS for Al for detonation calculations was based on 
two observations. The first observation is that to a good approximation, for Al subject to the 
ranges of pressures and temperatures of interest, Cv is constant and the Gruneisen parameter has a 
constant value T=2. The second observation is that D.J. Pastine10 had considerable success 
calculating shocked states in face-centered cubic metals by using a Morse potential to represent 
their zero degree isotherms. This Morse potential can be written for a gram atomic weight of 
metal in terms of the distance paramter y=l-(v/v0)

1/\ with v0 used to denote v at 0°K, a parameter 
b, and the latent heat of sublimation U0 as 

f/(v/v0) = U0(exp(2by)-2exp(by)) (2.3.18) 

Our approach, based on these observations, can be stated as follows. Use the values Cv=0.221 
cal/g, T=2, and shock wave data for Al, and the Morse potential to generate reference curves 
eR=eR(v) and PR

=
PR(

V
) 

and, thereby, construct an EOS for Al that is not restricted to the volume 
range spanned by its Hugoniot curve PIT^HC^O)- 

It was thought necessary, in implementing this approach, to construct an EOS for Al in 
the region spanned by its Hugoniot curve, and then ascertain the thermodyanic compatability of 
this EOS with the Morse potential. To provide the background for this implementation, we first 
present a method for using shock wave data to construct a complete EOS for a material with 
constant values of Cv and T. We then present our procedure for testing the compatibility of this 
EOS and the Morse potential. 

After completing this background, the application of our approach to Al is given. 

2.3.1.3. A Complete EOS Based on Shock Wave Data 

For our present purpose, it is convenient to consider a complete EOS as an EOS that 
allows us to calculate the values of e, T, and s at a point in the (v-p) plane. In this case, when Cv 

and T are known constants, we claim that knowledge of the Hugoniot curve pH=pH(v,y0) through 
the initial state (v0, p0, e0, s0, T0) provides enough information to construct a complete EOS in the 
region of the (v-p) plane spanned by PH^PHC^VQ) above the T0 isotherm. We substantiate this 
claim as follows. 

For convenience, we assume that the PITTHC^VO) curve satisfies the equation 

PH = a2(v0-v)/(v0-B(v0-v))2 (2.3.19) 

obtained from a linear shock velocity U-particle velocity u relation, U=a+Bu, and then consider 
the following differential equation for shock temperature TH, 

dTH+(I7v)THdv = (2Cv)-1[(v0-v)dpH+pHdv] (2.3.20) 

obtained by equating the differential deHcalculated from the e=e(T,v) EOS and Eq. (2.3.5). 
Formally, integrating Eq. (2.3.20) gives the equation for TH as 
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TH = TA? + (2cyy'fvr[(Vo-v)^)+pH]dV, (232l) 
v° 

which shows that the shock temperature can be calculated along the Hugoniot curve p=pH(v,v0) 
when pH is a known function of v, as exemplified by Eq. (2.3.19). 

After TH has been calculated as a function of v, the equation 

Cvr(T-TH) = v(p-pH) (2.3.22) 

can be used to calculate temperature along isochores emanating from the T0 isotherm. Because e 
can also be calculated along these isochores from Eq. (2.3.6) when T is a known constant, we 
need finally, to derive an equation for calculating s. Consequently, we integrate the differential 
ds obtained from the s=s(T,v) EOS, to obtain the following equation for the entropy along the 
Hugoniot curve, 

sH = s0+Cv[ln(TH/T0)+rin(v/v0)], (2.3.23) 

and write the equation for the entropy along isochores emanating from PH^PHCV^O) 
as 

s = sH + Cvln(T/TH) (2.3.24) 

Combining Eqs. (2.3.23) and (2.3.24) then gives the equation for calculating the entropy as 

s = s0+Cv[ln(T/T0)+rin(v/v0)] (2.3.25) 

It is now convenient to write the equations for the isotherm and the isentrope through the 
initial state (v0,p0=0) because we may use the Morse potential to try to match one of these curves 
later. Setting T=T0 in Eq. (2.3.22) gives the equation for the T0 isotherm in the (v-p) plane as 

P = PH-(TH-T0)Cvr/v (2.3.26) 

And substituting into Eq. (2.3.22) the expression for T obtained by setting s=s0 in Eq. (2.3.25), 
gives the equation for the isentrope through the initial state (v0,p0=0) as 

P = PH " [TH-T0 (VvflC^/v (2.3.27) 

2.3.1.4. The Compatability Condition for the Morse Potential and an EOS 
Calibrated with Shock Wave Data 

Because Eq. (2.3.18) for the Morse potential was originally written for the OK isotherm 
and the specific volume of metals at 0 K and p=0 are not really known, we will use this equation 
here with v0 considered to be the specific volume in the unshocked state. In this case, U0 is the 
latent heat of sublimation at T0. We assume that Eq. (2.3.18) represents the energy along an 
adiabat so that the equation for the isentrope passing through (v0, p=0) is obtained by 
differentiating Eq. (2.3.18) with respect to v as 
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p = -(dJ7/dy)(dy/dv) (2.3.28) 

and p=0 when d C//dy=0 and v=v0. Our compatability condition for the Morse potential and an 
EOS based on shock wave data is that, for the pressure range of interest, we can find a value of b 
for which the values of p calculated along the isentrope defined by Eq. (2.3.28) match those 
calculated along the isentrope defined by Eq. (2.3.27). 

2.3.1.5. Application of This Approach to Al 

In order to determine if the Morse potential can be incorporated into the EOS for Al 
based on shock wave data, values of the pressure calculated for Al using Eq. (2.3.27) must be 
compared with the corresponding values of pressure calculated from Eqs. (2.3.18) and (2.3.28). 
To this end, we first use these equations to calculate values of the pressure along the isentrope 
passing through (v0, p=0) 

Because shock temperature must be known before we can use Eq. (2.3.27), we first use 
Eq. (2.3.19) to evaluate the integral, say I, on the right-handed-size of Eq. (2.3.21), and thereby 
obtain an equation for calculating TH along the Hugoniot curve. Because T=2, this integral I can 
be written in closed form as the sum of three terms, I = I^+Ij, with I„ I2, and I3 expressed in 
terms of V=v/v0 and v= (1-B)+BV, as 

A =/V0V(l-F) (2.3.29.1) 

Equations (2.3.21) and (2.3.29.1) through (2.3.29.3) were used with the appropriate values of 

2(av0)
2    _ 

I2 =  ^-[(K-l)-(2-fi)lnr+(5-l)((Fy1-l)] (2.3.29.2) 
B3 

2avn _, _ _ _ 
73 = (—^)2[0.5(1-F )+(3-25)(F-l)+(3-5)(5-l)lnF-(5-l)2((F)1-l)] (2.3.29.3) 

B2 

v0=0.3584 cm3/g, a=5.33 mm/usec, and B=1.34 for Al to calculate values of TH in the reduced 
volume range, 0.77 <V< 1. These values of TH and the corresponding values of pH were then 
used in Eq. (2.3.27) with T0=298K to calculate values of the pressure ps along the (v0, p=0) 
isentrope. The energy change along this isentrope, es - e0, was also calculated using Eq. (2.3.6) 
with T=2. The values of TH, pH, and ps and es - e0, calculated in this way are listed in Table 2.1. 
The following equation for the (v0, p=0) isentrope, obtained from the first law of 
thermodynamics as 

pv2 = -2fv\-£)dv , (2.3.30) 
v0 

with 

g(F)=(_m-__+_]; (2331) 

B V      V1 

was also used to calculate values of ps at the same values of V to provide a check on the shock 
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temperature calculations. Both of these sets of values for ps were found to be in excellent 
agreement. 

The equation for calculating ps from the Morse potential follows from Eqs. (2.3.18) and 
(2.3.28) as 

Ps =  —[exP(2^)-exp(&;0] ; (2.3.32) 
3V2/3 

the equation for the slope of this isentrope is obtained by differentiating Eq. (2.3.32) with respect 
to v, yielding 

2 dp,      4bUn 2b2Un 
"vo  -T- =  -r[exp(2Äy)-exp(6y)]  +  -^[2exp(26y)-exp(6y)] (2.3.33) 

dv        9V 9V 

Recalling that the isentrope and the Hugoniot curve are tangent at (v0, p=0), we then 
equate their initial slope (dpH/dv)0=-(a/v0)

2 to that obtained by setting y=0 in Eq. (2.3.33) to 
obtain the following equation for the parameter b: 

b2 = 9a2/2U0 (2.3.34) 

Because the listed value of U0 for Al at 298°K is 78 kcal/mol, and a=5.33 mm/|isec, we are 
forced to use the value of b=3.25 when calculating ps from Eqs. (2.3.32). The values of ps and es- 
e0 calculated from Eqs. (2.3.32) and (2.3.18) using these values for the parameters are also listed 
in Table 2.1. 

We now compare the two sets of values for ps and es-e0 listed in Table 2.1 to see if the 
Morse potential is thermodynamically compatable with our EOS for Al based on shock wave 
data. The excellent agreement between these two sets of values for ps and es-e0 shows that the 
Morse potential can be used for Al to define realistic values for the reference energy eR= f/(v) 
along the reference curve pR= ps(v) =-d U/dv in pressure regions of interest. In this case, we can 
write Eq. (2.3.2) for Al with T=2 and the function g(v) defined by the Morse potential as 

e = pv/2 + Ü (v/v0)-psv/2 (2.3.35) 

The equation for pH can then be obtained by combining Eqs. (2.3.35) and (2.3.5) as 

pH = (psV + 2(e0- C/(v/v0))p0)/(2V-l), (2.3.36) 

and Eq. (2.3.27) with p=ps can be used to calculate TH. The values of pH and TH calculated from 
the Morse potential in this way are also listed in Table 2.1. 

21 



ENIGTR95-1 

Table 2.1. Values of the shock pressure pH, the shock temperature TH, and the pressure ps and 
change in specific internal energy es-e0 along the (v0, p=0) isentrope calculated for different 
values of the reduced volume V=v/v0 from an EOS for Al based on shock wave data and from the 
Morse potential with U0=78 kcal/mol and b=3.25. 

V 

EOS Values Morse Potential Values 

PH 
kbar K 

es-e0 
(mm/u)2 

Ps 
kbar 

Ps 
kbar 

es-e0 

(mm/u)2 K 
PH 

kbar 

1.00 
0.95 
0.90 
0.85 
0.80 
0.77 

0.0 
45.5 
105.7 
186.2 
295.8 
380.9 

298.0 
332.2 
387.1 
495.5 
712.4 
933.6 

0.0000 
0.0391 
0.1733 
0.4243 
0.8322 
1.1713 

0.0 
45.4 
104.7 
181.2 
279.9 
352.0 

0.0 
45.3 
104.2 
180.9 
281.0 
355.6 

0.0000 
0.0399 
0.1706 
0.4234 
0.8325 
1.1725 

298.0 
332.0 
387.1 
494.8 
718.3 
954.8 

0.0 
45.4 
105.3 
185.9 
297.3 
385.9 

After comparing the corresponding sets of values for the thermodynamic variables listed 
in Table 2.1, we conclude that the Morse potential provides a realistic description of Al for our 
detonation calculations. 

2.3.2 An Equation of State For AP Based on Shock Wave Data. 

Because AP is expected to decompose completely in the early stages of the detonation 
process, we use Eq. (2.3.6) to write its e=e(p,v) EOS as 

e=eH+(p-pH)v/T(v). 

In this case, when the e=e(p,v) EOS is rewritten in the form given by Eq. (2.1.14) as 

0x PVAP     .       AP 
"AP ^"-"-f'AP   "*"     -p 

AP 

eAP = (A^U + + < sAp(V) 

The function gAP(V) is defined over the volume spanned by the Hugoniot curve passing through 
the initial state (v=v0, p=0, e=e0). A method of extending this volume range is presented in 
Section 2.3.3. 

Our construction of an e=e(p,v) EOS for AP is based on the shock-wave data for AP 
given by F.W. Sandstrom, P.A. Persson, and B. Olinger (SPB)11, and its thermodynamic data 
given in the LLNL Explosives Handbook12. To be more specific, SPB give the following 
Hugoniots for solid density AP (p0=1.95 g/cm3), U=2.84+1.85u for 0.21 < u < 0.50 and 
U=2.90+l .59u for 0.66<u<2.10, as well as the value for the bulk sound velocity c0=2.84 
mm/usec; the LLNL Handbook gives the estimated values for the specific heat at constant 
pressure Cp, and the linear expansion coefficient a=l'\dl/dT)p as Cp=0.31 cal/g°C and 
a=40xlO"6/°C. Substituting these values for Cp and c0 into the thermodynamic identity 
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2 

r = — — (2.3.37) 

and the value V1(öv/ÖT)p=3a=1.2xlO-4/°C gives the value of r for AP as T^ =0.746. Because 
shock velocities of interest are in the 6 mm/usec region, and because of uncertainties in the 
thermodynamic data, we decided to base our EOS for AP on the U=2.90+l .59u Hugoniot curve 
and the value 1^=0.75. We also assumed Cv to be constant, and used these values of T and 
v"1(öv/öT)p with T=298K in the thermodynamic identity 

C, = C,(1+— ^-) (2338) 

p 

to calculate the value for Cv as (0^=0.302 cal/g k. 

Having assigned these values of the shock and thermodynamic parameters to AP, the 
combination of Eqs. (2.3.5), (2.1.14), and (2.3.19) allows us to write the g function for AP as 

gAP(V) = 1.8333(p0)^(^-)2[l-ft1^-&2(^)2]/Or V<\ (2.3.39) 
B V V 

with a=2.9 mm/usec, B=1.59, ^=0.8436, b2=0.1564 and F=((l-B)v0+Bv). Equation (2.3.2), 
with rAP=0.75 and g^V) given by Eq. (2.3.39) can now be used to calculate the isentrope 
through the initial state (v0,p=0). For notational convenience, the subscript AP will be mostly 
omitted from now on. 

2.3.2.1. The Isentrope Through the Initial State 

The differential equation for the isentropes is readily derived by equating the expression 
de=-pdv, obtained from the first laws of theormodynamics, and the expression for de obtained by 
differentiating Eq. (2.3.2): 

vdp+(T+\)pdv = -T-^-dv . (2.3.40) 
dv 

Formally integrating Eq. (2.3.40) from an initial condition (v=vi5 p=pj) gives the equation 

/pvr+1 =jp,.(v,)r+1+r(vrg(v)-v,rg(v.))+r2/. (2.3.41) 

with I. =  fv r~1g(y)dv, which gives the equation for the isentrope passing through the initial 

state (Vj=v0, Pi=0) as 

pvv+1 = rvrg(v)+r2/. (2.3.41.1) 
V 

with IQ -  Tv r~lg(y)dv, because g(v0)=0. For convenience in evaluating I0, we set 

I0 = flj/j-ajV^-ajVo^ (2.3.42) 

with a,=1.8333(a/B)2, a2=1.5466(a/B)2, a3=0.2867(a/B)2 and 
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V        _\_ V 1 V 1 

/j  =   fv   Adv , I2 =  fv   *V~ldv , 73 =   fv   AV~2dv . 
v0 v0 v0 

Our construction of the isentrope through the initial state then proceeds as follows. 

We first perform the itegration in I j to obtain the equation 

h = ^o)m (^3/4-D (2.3.43) 

with V=v0/v, and change variables, by setting v=X4 and ^BQP-BJ with B1=(B-l)v0/B. With 
this change of variables, I2 and I3 become 

X , 
4 r   X2dX 

h - — I  —  (2.3.44) 
5 J   X*-B, v } 

and 

x 
I. 4     r    X2dX 

3 
r    x~dx 

B2 i car4-/»,) 

We then use the identities 

1 =        dX        +    4X2dX 

XiX^-BJ       X\X*-BJ       {X*-Bxf (2.2 A6) 

and 

1.1        X2 

X\X*-BX)  ~ Bl 
[x2   (X4-5t)

] (2'3-47) 

to transform the integral I3 in two steps, the first by parts and the second by using partial 
fractions, into the equation 

= __i y™ I2 

^  ~  (5-l)v0
5/4  [(BV-(B-\))   1]     4(5-l)v„ ' (2.3.45)' 

'o = 1«1(v/V3,4-l)+-L1-[ -1]  + ( —-a2)v0I2 . (2.3.48) 
3 5-1      BV-{B-\) 4(5-1)     2   °2 

At this stage, it is convenient to rewrite the equation for I0 as 

3 5-1      BV-{ 
We finally use partial fractions to perform the integration in I2 and obtain the following equation: 

|     K*-(^1)4 l+(^±)4 , L 

I2 = B\-^—)w I In *  + In *  + ZCtan-^-^l)4  - tan"^-?-)4)' (2 3 44)' 
(5-l)v0 i    «_,  i »   i  i «"I Ä-1        ^ ; 

F4+(^J-)4 l-(—)4 

B B 

which together with Eq. (2.3.45)' defines the integral I3 as a function of the reduced volume 

24 



ENIG TR 95-1 

V=v/v0. 

Equation (2.3.39) and Eqs. (2.3.44)' and (2.3.48) were used to calculate values of g^V), 
I2 and I0(V) over the reduced volume range 0.62< V< 1, and then Eq. (2.3.41.1) was used with 
these values of g^V), I0(V), and 1^=0.75 to calculate values of the pressure ps on the isentrope 
over the same volume range. These values of gAP(V), I0(V), and ps are given in Table 2.2, as well 
as the values of the temperature along the isentrope calculated from the equation 

T = r.(^i)0-75 (2.3.49) 
v 

with V:=vn and T:=T, i    v0 cul,a M    x0- 

To complete this series of EOS calculations for AP, we calculated values of the pressure 
pH and temperature TH along the Hugoniot in the (V-p) plane over the same reduced volume 
range, 0.62<V< 1. These values of pH and TH are also given in Table 2.2. The values of pH were 
calculated from Eq. (2.3.19) with v0=0.513 cm3/g, a=2.90 mm/usec and B=1.95, and the values 
of TH were calculated by substituting the corresponding values of Ts, ps, and pH into the equation 

HoiL-v 

with p0=1.95 g/cm3, 1^=0.75 and (Cv)AP=1.264xlO-2 kbar cm3/g K. 

Examination of the values of TH in Table 2.2 leads us to question this treatment of AP 
because we do not expect the shock temperature to reach such high values in the 300-400 kbar 
region. The reason for these high temperatures is clearly seen by considering Eq. (2.3.50). As V 
decreases and (pH-ps) increases, the difference (TH-TS) becomes magnified because Cv and T are 
assumed to be constant and T<1. We suggest that a task to investigate the validity of these 
assumptions be made a task in any additional work that may be performed on explosive 
compositions containing AP. 

2.3.2.2. The Family of Isentropes Intersecting the Hugoniot Curve. 

Because of our assumption about the behavior of reacting AP behind a shock, we must 
have a method for calculating the relationship between the pressure and volume along isentropes 
that intersect the shock. An equation providing this relationship along the isentrope passing 
through a point (vH, pH, TH) on the Hugoniot is readily obtained by arranging Eq. (3.2.50), with 
Ts=TH(vH/v0)

0-75 as 

TC T V 
Ps = Pn-Po-f1- (1 -(Y)0'75) (2.3.50)' 

with VH=vH/v0. 

Table 2.2. Values of v^g^CV), I0/(V0)AP the pressure ps and temperature Ts along the (v^, p=0) 
isentrope; the shock pressure pH and the shock temperature TH for different values of the reduced 
volume V=v/v0. 
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V 
.-vfgApCv) 
(mm7jisec)2 

V(VOÄP 
(mm/|asec)2 

Ps 
kbar 

T 
K 

PH 
kbar 

TH 

K 

1.0 0.000 0.000 0.0 298.0 0.0 298.0 
0.95 0.616 0.016 9.68 309.7 9.68 309.7 
0.90 1.368 0.066 23.09 322.5 23.19 327.1 
0.85 2.302 0.160 41.95 336.6 42.42 358.2 
0.80 3.496 0.311 68.95 352.3 70.52 420.2 
0.75 5.068 0.537 108.57 369.8 112.94 547.1 
0.70 7.226 0.866 168.68 389.4 179.86 812.9 
0.65 10.351 1.347 264.30 411.6 291.82 1379.6 
0.62 12.990 1.736 350.34 426.5 397.80 2018.8 

2.3.3. A Method to Extend Equations of State Based On Shock Wave Data 

We describe here another set of E,P,V and T,P,V equations of state of AP, which differ 
from those derived in Section 2.3.2 in the following ways. With respect to the E,P,V equation of 
state, the two are identical for the region V< V0; in this section, we extend the equation of state to 
the region V>V0, which was not done in Section 2.3.2. The T,P,V equations of state are different 
in that cv=constant is assumed in Section 2.3.2, whereas in this section, we use, instead, the 
experimental coefficient of volume expansion and specific heat at constant pressure along the 1 
bar isobar. The derivations provided below closely follow the earlier theoretical results of Enig.9 

Enig9 used the following Mie-Gruneisen form of the E,P,V equation of state, which we 
now apply to ammonium perchlorate: 

P-Pr(V)=(Y/V)[E-Er(V)], (2.3.51) 

where P,V, and E are, respectively, the pressure, specific volume, and specific internal energy, y 
is the Gruneisen coefficient (assumed to be a constant for all P and V), and subscript r refers to 
the reference state to be specified below. It should be noted that Eq.(2.3.51) is a first-order 
Taylor expansion in the neighborhood of the reference curve,1 and 

Y=V(3P/öE)v=constant. 

In order to evaluate y, we note that the definition of the sound speed c, 

c2=v2[P(ap/aE)v-(ap/av)E], 

may be rewritten as 

c7v2=[p+(3E/av)p](dP/aE)v 

=(cp/ßV)(3P/3E)v, 

(2.3.52) 

(2.3.53) 

where 
ß=(l/V)(öV/ÖT)p 

(2.3.54) 

(2.3.55) 
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and cp are, respectively, the coefficient of thermal expansion and specific heat at constant 
pressure. From Eqs. (2.3.52) and (2.3.54), it follows that 

Y=ßc2/cp, (2.3.56) 

where ß, c, and cP may be chosen at the initial state (P0,V0,E0,T0), i.e., 

Y=Yo=ßoC02/cp,o, (2.3.57) 

and the subscript o refers to the initial state P0=l bar, T0=298°K. 

Thus far, the reference state has not been specified. Usually, for V< V0, the Hugoniot 
originating at the initial state E0,P0,V0 is chosen as the reference state; we also shall do that. For 
the usual application of an E,P,V equation at high pressures as encountered, e.g., in the shocking 
of a metal, the thermodynamic states are limited to V<V0. However, when the shocked state is 
subsequently expanded isentropically by a rarefaction wave originating at a free surface, the end 
state may have V>V0. If Pr(V) and Er(V) refer to the Hugoniot, V is not defined for V>V0. The 
usual way this dilemma is treated is formally to extend the P,V Hugoniot relationship to V>V0, 
i.e., into the "rarefaction shock" region. It is argued that the second-order tangency of the 
Hugoniot and the isentrope at (P0,V0,E0) justifies this extrapolation if the volume increase in the 
expanded state, produced by the irreversible shock heating, is small.13 This argument may be 
acceptable for the calculation of material motion, but probably would lead to large errors in the 
calculation of the temperature of the shocked state. It will be shown below that the temperature 
of the shocked state is a sensitive function of the T,V variation along P=P0 and the slope of the 
P,V isentropes at P=P0. For this reason, we shall use the isobar P=P0 as the pressure reference 
state Pr and Er(V)=E(P0,V) as the internal energy reference state. 

2.3.3.1. Region 1:V^V0 

In the low-pressure region V^V0, Enig defined9 

Pr(V)=P0 (2.3.58) 

Er(V)=E(P0,V). (2.3.59) 

By integration of the thermodynamic identity 

(ÖE/ÖV)p=cP/ßV-P (2.3.60) 

along P=P0, we find 

E(P0,V)=E0+/Vo[Cp/ßv'-Po]dV, (2.3.61) 

where E0=E(P0,V0), the specific internal energy at the initial state, is an arbitrary constant that can 
be set equal to zero if desired. If cp=cpo and ß=ß0 on P=P0, Eqs. (2.3.55) and (2.3.61) yield 

T(P0,V)=T0+(l/ß>(V/V0) (2.3.62) 
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Er(V)=E(P0,V)=E0+(cp!0/ß0)^(VA^0)-P0(V-V0). (2.3.63) 

It should be noted that though all terms involving P0 are negligible, they will be kept in order that 
all thermodynamic relationships to be derived are formally exact. Equation (2.3.51) becomes 

E=E0-P0(V-V0)+(cP;0/ß0)^(VA^0)+(P-P0)V/Y for V*V0. (2.3.64) 

Enig14 has shown that the thermodynamic identity 

[p+(aE/av)p](3T/ap)v-(aE/ap)v(aT/öv)P=T (2.3.65) 

yields the characteristic equations 

dP/dV+[P+(aE/aV)p]/(dE/dP)v=0 (2.3.66) 

dT/dV+T/(3E/aP)v=0, (2.3.67) 

which with an E,P,V equation of state and a nonisentropic initial curve along which the tempe- 
rature is prescribed, e.g., Eq. (2.3.62), leads to a T,P,V equation of state as described below. 

The solution of Eq. (2.3.66) yields the isentropes 

C^KP-PJV+c^/ßJV*, (2.3.68) 

where the constant of integration C, is different for each isentrope, i.e., Cr varies with the entropy 
S. The solution of Eq. (2.3.67) along an isentrope is 

C2=TV*, (2.3.69) 

where C2, the constant of integration, varies with S. Substitutions of P=P0 into Eq. (2.3.68) and 
Eq. (2.3.62) into Eq. (2.3.69) yield, respectively, C, and C2 as functions of the parameter V (the 
specific volume along P=P0): 

Cr^oVVßo  onP=P0 (2.3.70) 

C2=[T0+(l/ß0)MV/V0)]V*   <mP=P0. (2.3.71) 

For convenience, replace V in the above equations by z. Equations (2.3.68) and (2.3.69) are now 

[(P-P0)V+cp!0/ß0]V^=cp,oZVß0 (2.3.72) 

TVMT0+(l/ß0)Mz/V0)]z
1' (2.3.73) 

Elimination of the parameter z between Eqs. (2.3.72) and (2.3.73) yields the P,V,T equation of 
state: 

T(P,V)=x[T0+(l/ß0)^(x1/WA^0)], (2.3.74) 
where 
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x(P,V)=l+ß0(P-P0)V/cP;0. (2.3.75) 

In particular, on V=V0: 

T(P,V0)=T0[l+ß0(P-P0)V0/cp>0]{l+(l/Yß0T0)^[l+ß0(P-P0)V0/cp>0]} (2.3.76) 

2.3.3.2. Region 2: V<V0 

For V<V0, Enig9 chose the Hugoniot pressure PH(V) as the reference pressure Pr(V), 
where the origin of the" Hugoniot is the initial state (P0,V0,E0). Thus, Eq. (2.3.51) is now 

P=PH(V)+(Y/V)[E-EH(V)]. (2.3.77) 

Substitution of Eq. (2.3.77) into the isentropic relationship 

dE+PdV=0 (2.3.78) 

and use of the shock condition 

E„-E0=(PH+PO)(V0-V)/2, (2.3.79) 
yields 

dE/dV+YEA^=Y[E0+
1/2P0(V0-V)]A^+1/2YPH(V0-V)AA-PH, (2.3.80) 

whose general integral is 

C3=(VA^oy[E-E0-
1/2P0V0+

1/2YP0V/(Y+l)]+E0+
1/2P0V0/(Y+l)+I(V), (2.3.81) 

where 
l(yyV2V0-yfty(2+y-yV0/v)1>H(v)dv (2.3.82) 

and C3 is the constant of integration defining the isentrope in the E,V plane. In terms of the as 
yet unknown Hugoniot PH(V), the isentropes in the P,V plane are obtained by substitution of E 
from Eq. (2.3.77) into Eq. (2.3.81):   . 

c3H^mP-PH)-+y2(PH+PJ(vo-V)-y2pyo+y2y^]+Eo+y2^+i(n       (2.3.83) 
Vo Y Y+l Y+l 

To this point, the analysis for Region 2 is general in terms of an as yet nonpr escribed 
Hugoniot curve P^fV). For simplicity of analysis, Enig9 limited himself to those unreacted 
explosives (as well as metals) that satisfy the experimental shock condition 

U=c0+au, (2.3.84) 

where U and u are, respectively, the shock velocity and particle velocity, and c0 and a are 
empirical constants.'5,12  In theory, the c0 of Eq. (2.3.84) should be the same as the initial sound 
speed of Eq. (2.3.57), but in practice it is not because Eq. (2.3.84) generally does not hold as u->0. 
It follows from the Rankine-Hugoniot conditions that 

PH(V)=P0+c0
2(V0-V)/[V0-a(V0-V)]2. (2.3.85) 
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(2.3 .86) 

(2.3 .87) 

(2.3 .88) 

(2.3 .89) 

(2.3 .90) 

(2.3.91) 

(2.3.92) 

Substitution of Eq. (2.3.85) into Eq. (2.3.82) gives 

I(V)=1/2P0V0[(Y+2)R^'/(Y+l)-RY-(Y+l)-1]+c^+1(Y+l)(a-l)-2J(V), 
where 

R=V/V0 

J(V)=J^(v)t-Y(mt-l+n/t)(l-t)-2dt 

ni=1/2Ya/[(a-l)(Y+l)] 

n=1/2(Y+2)(a-l)/(Y+l)a 

A=l-a"1<l 

B(V)=AV0/V<1, 

and the transformation t=(l-a"1)V0/v has been used. It should be noted B(V)< 1, where the 
equality holds only as V/V0-> 1-a1 as PH-°° in Eq. (2.3.85). 

Using partial fractions, Eq. (2.3.88) becomes 

J(V)=J^r[A1t-
1+A2(l-t)-

1+A3(l-t)-
2]dt, (2.3.93) 

where 

A^n, A2=n-m, A3=m+n-1. (2.3.94) 

But 

JJ(^(l-t)-2dt=B1-Y(l-B)-1-A1-Y(l-A)-1+Yj5(V)rT(l-t)-1dt, (2.3.95) 

which when substituted into Eq. (2.3.93) yields 

J(V)=[A1/Y-AA3/(l-A)]AY-[A1/Y-BA3/(l-B)]B-Y+(A2+YA3)^
(V)t"Y(l-t)"1dt. (2.3.96) 

By Eqs. (2.3.83), (2.3.86), and (2.3.96), the evaluation of the constant C3, which 
characterizes an isentrope, entails the evaluation of the integral in Eq. (2.3.96). To evaluate the 
integral, we note that 

i^%Y(i4)-idt=jr)tN-Ydt/[tN(i-t)]=j^v'tN-MtEt-k+jr)tN"Y(i-t)-idt 

=jB(v)tN-Y(1 _t)-idt+£(BN-k-Y+1-AN-k-Y+1)/(N-k-Y+l) 

=J^(v)ts-1(l-t)-'dt+E(Bs-k-As-k)/(s-k), (2.3.97) 

where the summation is taken from k=l to k=N, N is the smallest non-negative integer greater 
than Y-l, 
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S=N-Y+1>0, (2.3.98) 

and the integral16 

J5(vHs-1(l-t)-1d1=s-1Bs
2F1(l,s;l+s;B)-s-1As

2F1(l,s;l+s;A), (2.3.99) 

is given in terms of Gauss's hypergeometric series.17 Note that if N=0, the summation term on 
the right-hand side of Eq. (2.3.97) is set equal to zero. The exact derivation of the P,V isentrope 
characterized by some value of C3 (a function of the entropy) is complete. 

In order to avoid the need to evaluate Gauss's hypergeometric series, the integral in Eq. 
(2.3.96) can be accurately approximated by fitting (1-t)"1 by a polynomial in t over the range 
0<l-a"1=A<t<B(V):=AVoA'r<l and carrying out the resulting simple integration. A single 
polynomial fit can be made to work for almost all explosives over a single interval Amin<t<Bmax, 
where Amin=0.2 and Bmax~0.9: 

(l-fj^E^a/, 

where a„ = 13.29242189, a, = 247.2782554, % = 1745.422711, a3 = 6618.403805, a4 = 
14505.10394, a5 = 18455.64985, a6 = -12662.06958, and a? = 3633.143062. 

The solution of Eq. (2.3.67) along an isentrope is 

C4=TVY, (2.3.100) 

where the subscript 4 is used in this region to distinguish the isentrope from that in Region 1 
given by Eq. (2.3.69).   Substitution of Eq. (2.3.76) into Eq. (2.3.100) yields C4 as a function of 
the parameter P on the non-characteristic (non-isentropic) line V=V0; then, for convenience, P is 
replaced by the new parameter y. By Eq. (2.3.100) the temperature along the isentrope is now 
given by 

TV^T0V/[l+ß0(y-P0)V0/cp,0]{l+(l/Yß0T0)^[l+ß0(y-P0)V0/cPi0]}. (2.3.101) 

Substituting V=V0 into Eq. (2.3.83) yields 

C3=E0+(P-P0)V0/Y   onV=V0. (2.3.102) 

Replacing P by y in Eq. (2.3.102) and substituting the result into Eq. (2.3.83) gives the 
P,V isentrope: 

y=ro
+^K^n(P-PH)-

+y>(PH
+PJ(vo-v)-y2povo+y2yPo^]+K (2.3.103) 

Vo    Vo Y Y+l        Y+l 
Equations (2.3.101) and (2.3.103) define the T,P,V equation of state for Region 2 in terms 

of the parameter y. Thus, for known P and V, y is found from Eq. (2.3.103) (remembering that 
PH is given by Eq. (2.3.85)) and then substituted into Eq. (2.3.101) to yield T. 

2.3.3.3. Connecting the Isentropes of Regions 1 and 2 at V=V0: 
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The P,V isentropes in Regions 1 and 2, which are given, respectively, by Eqs. (2.3.68) 
and (2.3.83), meet at V=V0. Substituting V=V0 in Eqs. (2.3.68) and (2.3.73) and eliminating P 
between the resulting equations give 

C^YCCs-EJ+VPJVJ. (2.3.103.1) 

2.3.4. A Thermodynamic Model For A1203. 

An examination of the shock wave data for corundum15, a-Al203, with a density of 
(p0)1=3.98 g/cm3, and our shock pressure range of interest led us to conclude that an adequate 
thermodynamic treatment of a-Al203 and y-Al203 can be based on the assumption that the 
Hugoniot curves are straight lines. In this case, the equations for the pressure and energy along 
these Hugoniot curves can be written as 

and 
P = (Poco)/O<rv), > '=1 °r 2 > (2.3.104) 

«r(«o)i = ^Y%,-v)f , / = 1 or 2 , (2.3.105) 

where (c0); denotes the constant shock velocities, (e0). = (&h°)'Al 0  , and the Hugoniot curves are 
also isentropes because Eq. (2.3.105) satisfy the equation dej—pdVj. The combination of Eqs. 
(2.3.104), (2.3.105) and the e=e(p,v) EOS given by Eq. (2.1.16) gives the following equations for 
the gj(V) functions for A1203: 

'^'  f,   2(T+l)V   (V+2)V2
S   .    Tr ,     . ,       „ «,in« 

gfY) = Po  (1-   v _ '   +-^7—\f°r V^1 > , = 1 or 2 • (2.3.106) 2 r r 
To proceed with our thermodynamic model, we assumed that oc-Al203 and y-Al203 have constant 
values of r and Cv. With literature values of (Cp)1=0.775xl02 kbar cm3/g K, 
((öv/öT^p^S.lOSxlO"6 kbar cm3/g K for a-Al203, and a value (c0)i=9.64 mm/(isec suggested by 
the shock-wave data, Eqs. (2.3.37) and (2.3.38) give the values r!=2.44 and (Cv),=0.764xl0"2 

kbar cmVg K, for a-Al203. 

Now with the limited amount of thermodyanamic data available, we have to formulate a 
procedure for deciding whether oc-Al203 or y-Al203 is present in our reacting explosive 
compositions containing Al. We base this formulation on the fact that a-Al203 is the most stable 
form of A1203 in the standard states (p=0, T=298, v=(v0);), and on the premise that the Hugoniot 
curves of cc-Al203 and y-Al203 intersect at a point (vj5 Pj) in the (v,p) plane. Then, A1203 will 
be assumed to be in the a-form when p<pj5 but in the y-form when p>Pj. Our justification, for 
this assumption as well as our procedure for evaluating unknown thermodynamic parameters for 
y-Al203 is based on the following calculations of the Gibbs free energies Gx and G2 for oc-Al203 

and y-Al203, respectively. 

Our free energy calculations are based on the thermodynamic data for a-Al203 and y- 
A1203, which are listed in the 66th Edition of the Handbook of Chemistry and Physics (HCP)18. 
The values given for the heat of formation and entropy for oc-Al203 in the standard state (p=l 
atm, T=298.15 K) are (AH°f)i=-400.5 kcal/mol and S?=12.17 cal/deg mol. In constrast to a-Al203 

, a range of values of (p0)2 and (AH°)2 are given for y-Al203, and no value for S2 is given. To be 
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more specific, as y-Al203 changes from its amorphous to crystalline form in the standard state, 
(p0)2 varies from 3.5-3.9 g/cm3 and (AH°)2 varies from -390 to 395 kcal/mol. Additional 
background information for our thermodynamic model of A1203 was the following experimental 
observation from a paper by A.J. Brock and M.J. Pryor,19: the only oxidation product formed by 
pure Al subjected to low pressures of 02 in the 300-425°C temperature range is amorphous y- 
A1203. This observation suggests that the Y-A1203 formed during the detonation process will be 
in a somewhat amorphous state; it allows us to make an estimate of the standard entropy S2 of 
this amorphous Y-A1203. 

Our estimate of S2 is based on the assumptions that a-Al203 and amorphous y-Al203 have 
the same values of Cp, (Cp)1=(Cp)2, and that G^G;, at 300°C. In this case, the equation 

(Aff/^ - TS° = (AH°)2 - TS° (2.3.107) 

with T=573 K, the values for (AH% and S? given above, and a value of (AH°f)2=-392 kcal/mol 
gives a value for the standard entropy of amorphous y-Al203 of S2=27.00 cal/deg mol. 

At this stage in our treatment of A1203, we have two adjustable parameters, Pj and (p0)2, 
whose values must be specified before this model can be utilized. Because values for these 
parameters are not known at this time, we first present a procedure for completing this model 
when pj and (p0)2 are prescribed, and then exemplify it by using particular values for Pj and (p0)2. 

Our procedure for closing our thermodynamic treatment of A1203, when Pj and (p0)2 are 
prescribed, is as follows. First, use the value of Pj in Eq. (2.3.104) with i=l to determine the 
value of Vj, and use this value of Vj in the following equation with i=l, 

(r.),. = T0(^i)r' , (2.3.108) 
j 

to calculate the value of (Tj)„ at (vj; Pj). Next, use the condition G^Gj at the point (vj5 Pj) to 
calculate (Tj)2, and use Eq. (2.3.108) with j=2 to calculate the corresponding value of T2. 
Because (c0)2 is known from Eq. (2.3.104) when p, and (v0)2 are specified, and (Cp)i=(Cp)2 by 
hypothesis, Eq. (2.3.37) can be used to calculate the corresponding value of ((dv/dT)p)2 for y- 
A1203. We will now carry out this procedure in detail for the case when pplOO kbar and 
(p0)2=3.52 g/cm3. 

Thus, we first set pplOO kbar in Eq. (2.3.104) with (p0c^)1=3.698xl03 kbar to obtain the 
corresponding value of Vj=0.2445 cm3/g. Equation (2.3.108) with i=l and 1^=2.44 then gives a 
value of (Tj)!=318.6 K and Eq. (2.3.104) with i=2 and (v0)2=0.2841 cm7g gives the value of 
(c0)2=4.515 mm/(!sec. We next write the equations for Gx and G2 at (Vj, Pj) as 

G, = (A"/°)i + 7«vo)i+v,)-W° (2.3.109.1) 

and use the equation obtained by setting G^Gj to calculate a value of (Tj)2=613 K, which is used 
in Eq. (2.3.108) with i=2 to calculate a value of r2=4.80. Because the value of (Tj)2=340°C lies 

G2 = (&Hf\ + ^((v0)2+v.)-(r.)2S2° (2.3.109.2) 
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towards the bottom of the temperature range reported for the formation of amorphous y-Al203 at 
low pressures, it is reasonable to choose pplOO kbar and (p0)2=3.52 cm3/g as the values for these 
parameters in a first-generation thermodynamic model for A1203 developed in Task 1. The 
calculated value of r2=4.80 leads to the conclusion that in this treatment of A1203 the thermal 
coefficient of amorphous Y-A1203, ((6V/3T)p)2, is ten times greater than the thermal coefficient of 
a-Al203,((av/aT)p)1. 

In any future work to be performed on explosive compositions contains Al, the method 
presented in the previous section should be used to extend these EOS for a-Al203 and amorphous 
y-Al203 beyond the volume ranges spanned by their Hugoniot curves. Melting of A1203 should 
also be considered. 

2.3.5. Polytropic Equations of State for the Detonation Products 

The limitations of the polytropic EOS led to the development and implementation of 
more realistic EOS for detonation products20'21. More basic EOS for detonation products, based 
on the work of J.D. Weeks, D. Chandler, and H.C. Anderson22 have been developed by F.H. 
Ree23 and W.B. Brown24, and for detonation products containing Al by H.D. Jones and F.J. 
Zerilli25. These EOS address both the spherically averaged and multipole components of the 
temperature-dependent pair potential between the molecular species. Use of these EOS was 
considered, but we decided that there was insufficient time to adopt them in Phase I. For this 
reason, the polytropic EOS was considered to be adequate for our detonation modelling in Phase 
I. Consequently, the polytropic E=E(p,vf,mH20) EOS of our AP/A1 mixture has already been 
introduced in Section 2.1, and the polytropic E=E(p,vf,mH20, mC02, mC2H6) EOS for our 
CaHbNcOd/Al mixture can be seen in Eq. (2.2.20). These polytropic EOS extend those usually 
encountered in the literature by accounting quantitatively for the reactions of the detonation 
products with Al. The reaction coordinates used to describe the changing masses of some of the 
fluid constituents in the detonation products, however, were only included in the standard states 
term containing heats of formation as shown in Eq. (2.2.20). 

Because these E=E(p,vf,mH20) and E=E(p,vf,mH20, mC02, mC2H6) EOS are incomplete and 
provide no information about temperature, they are only adequate for treating the detonation 
process when the temperature need not be accounted for explicitly. Consequently, they are 
adequate for a detonation model when the solid components behind the shock are assumed to be 
constrained to their own isentropes, but not when a solid component such as A1203 is assumed to 
attain thermal equilibrium with the detonation products. Thus, it was necessary to construct a 
T=T(p,Vf) EOS for detonation products to accomodate our assumption that Tf=Tj. This 
construction proceeds as follows. 

2.3.5.1. A p=p(T,V) EOS of Detonation Products 

To be consistent with the polytropic EOS introduced in previous sections, we write the 
complete E=E(Sf,Vf, ^) EOS for detonation products as 

E = Ec&)+E£Sf,V), i=\,...m , (2.3.110) 

so that the extents of reaction ^ appear only in the standard state term Ec(^). Now, because we 
are dealing with polytropic media only, it is convenient to omit the subscript f. In addition, 
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where it is convenient for our purpose, we will only consider one extent of reaction coordinate £. 

In this case, the thermodynamic identities for T and p can be written as T^E/dS and 
p=-dE:/dV, the EOS for T and p in terms of S can be written as T=T(S,V) and p=p(S,V), and S 
can be eliminated between these EOS to show that T=T(p,V). Thus, when E=E(S,V,£) is written 
as E=EC(0+E,(S,V), the partial derivatives (dT/aOp,v> (9T/3Ö s,v> (ßp/d%) s,v, and (dS/d© T>v are 
all zero, and it follows from the following identities for the chemical affinity A26, 

.      rdE^ tdE^ .BE.      M. 

that -A=(3E/d£) p v . Consequently, the \ terms in Ec(£) are only associated with the heats of 
formation of the species taking part in the reaction. 

To proceed with our construction, we consider the case when El is a separable function of 
S and V given by the equation 

El = V-'E^S) , (2.3.112) 

where n is a constant parameter, and we differentiate this expression for Ex to obtain equations 
for p and T. The identity for p gives the equation 

— = V-'E^S) , (2.3.113) 
n 

which together with Eq. (2.3.110) allows us to write the E=E(p,V,^) EOS as 

E =Ecat) + SL (2.3.114) 
n 

and identify the parameter n as n=y-l. The identity for T gives the equation 

T = V-ndExldS , (2.3.115) 

which leads to the following equation for Cv, 

dEJdS 
cv = — r • (2.3.116) 

We next combine Eq. (2.3.115) with the equation obtained by differentiating Eq. (2.3.113) 
partially with respect to T, to obtain the following equation: 

?in ftC 
<a >r = — • (2.3.117) dT v        V 

Because (dS/8E,)TV=0, we can integrate the differentiated form obtained by combining the identity 
dS=CvdT/T+(dp/äT)vdV and Eq. (2.3.117), to get 

TV" = expfdS/Cv . (2.3.118) 

It follows from Eq. (2.3.116) that we cannot perform the integration in Eq. (2.3.118) until Cv is 
know as a function of S. We simply bypass this difficulty here by assuming that Cv is a constant. 
Then E, satisfies the equation dEyldS=e    v which on integration yields the equation 
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E^S) = CVTV"+E? . (2.3.119) 

Combining Eqs. (2.3.113) and (2.3.119) and setting n=y-l gives the p=p(T,V) EOS as 

PV=(y-\)CvT + E\IV^
X (2.3.120) 

with E? a parameter to be determined. 

We finally assume that our polytropic fluid has a mass m, set V=mv, and rewrite Eq. 
(2.3.120) in terms of specific quantities as 

pv = (J-l)cT + i(-)Y_1 (2.3.120)' 
v 

with cv=Cv/m and a constant A = (pv-(y-\)cf). Equation (2.3.120)' can be calibrated for 
detonation products by using known values of p , v , f , and cy at the CJ point to evaluate the 
constant A. 

2.4. Steady-State, Nonideal Detonation in an Explosive 

2.4.1. Composition Containing Al 

Our thermodynamic models for explosive compositions presented in Section 2.1 and 2.2 
are both based on the tenet that a satisfactory treatment of nonideal detonation in an explosive 
composition containing aluminum (Al) must take account of the reaction of the explosive grains 
and Al particles in the reaction zone (RZ) neighboring the shock front. This tenet leads to two 
limiting cases of nonideal detonations, that propagate at constant velocity and consequently are 
supported by steady-state, reaction zones (SSRZ). In one of these cases, the time scale for the 
reaction of the Al with the explosive's products is much larger than the time scale for the 
decomposition of the explosive grains: all the Al passes through the SSRZ before it reacts with 
the product gases in the ensuing release wave. In the other case, the time scale for the reaction of 
Al with the explosive's products is significantly smaller than the time scale for the 
decomposition of the explosive grains: all the Al reacts in the SSRZ; the release wave can be 
modeled as an isentrope. Consequently, a constant-velocity, nonideal detonation will in general 
be represented by an intermediate case with Al reacting in both the SSRZ and the release wave, 
and rate functions for the decomposition of the explosive and the reactions of Al must be known 
before a thermo-hydrodynamic model for such a detonation can be used to calculate its 
properties.   For these reasons, we performed two tasks to provide a more definitive background 
for nonideal detonation and thereby develop a better appreciation of its complications. In the 
first task, we developed a prototype model for SS, nonideal detonation, and in the second, a 
prototype model for burning explosive grains. The work performed on the first task will be 
presented in this section but the work performed on the second task will be presented in 
Appendix A. 

To provide background for our treatment of SS, nonideal detonation, we first present the 
equations governing a SS detonation wave and then consider the relationship between its RZ 
length and corresponding reaction time. 
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2.4.2. Equations for a Steady-State Reaction Zone 

Here, we will use the subscripts x andp to denote the explosive and its products, the 
subscript H to denote the shocked state, and either a superscript or a subscript 0 to denote the 
standard state of the explosive and the detonation products, i.e., at pressure p0 and temperature 
T0. Recalling that the Rankine-Hugoniot (RH) jump conditions are first integrals of the 
differential equations expressing the conservation laws when the flow has attained a SS, we write 
the equation governing our SSRZ as 

p(D-u)=p0D, (2.4.1) 

p=p0D
2(l-v/v0), (2.4.2) 

e-e°=pv0(l-v/v0)/2, (2.4.3) 

with D and u used, respectively, to denote the detonation velocity and the particle velocity, and 
p0=0. Eq. (2.4.1) expresses the conservation of mass, Eq. (2.4.2) expresses the conservation of 
mass and momentum, Eq. (2.4.3) expresses the conservation of mass, momentum, and energy, 
and the equations governing the shock at the front of the SSRZ are obtained by putting a 
subscript H on the variables p,u,p,v and e in Equations (2.4.1), (2.4.2), and (2.4.3). 

To continue this treatment of our SSRZ, we introduce the sound speed c, define the 
adiabatic index k by the equation c2=kpv, and recall that the SSRZ terminates at the Chapman- 
Jouquet (CJ) state where the flow become sonic. Using the subscript j to denote the CJ state, this 
sonic condition is expressed by the equations, 

D-UpCj, (2.4.4) 

The combination of the equations pjCj=p0D, c^kjPjVj, and Eq. (2.4.2) written for the CJ state, then 
gives the well known equations for v,u,c, and p in the CJ state: 

Vj /vo=kj/(kj+l), (2.4.5) 

kjuj=cj=Dkj/(kj+l), (2.4.6) 

p-PoD^kj+l). (2.4.7) 

We finally note that the relationship between D and the specific chemical energy q 
liberated by a particle passing through the SSRZ is derived by combining the e=e(p,v) equation 
of state for the detonation products with the following equation: 

ej-e°=D2/2(kj+l)2 (2.4.8) 

obtained by combining Eqs. (2.4.5) and (2.4.7) with Eq. (2.4.3) written for the CJ state. Having 
derived the RH jump conditions for SS flows, it is convenient to consider how RZ length and 
reaction time are related in a SS detonation. 
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2.4.3. The Relation Between Reaction Zone Length and Reaction Time in a Steady 
State Detonation Wave 

Our purpose here is to derive equations that place upper and lower limits on the SSRZ 
length L when the detonation velocity D is known and the reaction time tR has been estimated. 
We accordingly consider a one-dimensional, SS, ZND (Zeldovich, von Neumann, Doering) 
detonation wave. With our present notation, the equation for the RZ length can be written as 

h 

L  = DtR - ju dt , (2.4.9) 
o 

where t denotes the time. 

Because u drops linearly with p along the Rayleigh line representing the SSRZ, realistic 
equations for lower and upper limits of L can be obtained by setting, respectively, u=uH and u=u 
in Eq. (2.4.9). To derive the equation for the lower limit L, we assume that shock velocity U,uH 

Hugoniot curve for the explosive is linear, U=a+Bu, and use the value of uH=(D-a)/B in Eq. 
(2.4.9) to obtain the equation 

L = D(l-(D-a)/DB) tR. (2.4.10) 

To derive the equation for the upper limit L+, we recall that Uj=D/(kj+l), where k denotes the 
adiabatic index (dlnp/dlnv)s, and use this value for Uj to obtain the equation 

L^kjDVCkj+l) (2.4.11) 

with the values of a=2.90 mm/usec and B=1.59 for AP given by SFP11 and the values of D=6.6 
mm/fisec and kj=3.45 for AP obtained from a TIGER code calculation. Equations (2.4.10) and 
(2.4.11) for AP become 

L=4.29tR (2.4.10)' 

L+ = 5.16tR. (2.4.11)' 

Thus if tR=0.5 |^sec, the upper and lower limits for the length of the RZ in AP are, respectively, 
2.58 mm and 2.14 mm. 

It is now convenient to formulate our prototype model for SS nonideal detonation. 

2.4.4. A Prototype Model for Nonideal Steady State Detonation 

For convenience in formulating a prototype model for nonideal SS detonation, we again 
consider the CaHbNcOdAlf composition discussed in Section 2.2. We adopt the reaction scheme 
formulated for this composition, but for the sake of tractability, make more simplistic 
assumptions about the condensed components. We formulate the simplest treatment of 
detonation supported by (R.3) and (R.7) by assuming the following: 
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A.7 The explosive X=CaHbNcOd is a polytropic explosive with the same index as the 
polytropic products. 

A. 8 Both Al and A1203 can be treated as incompressible solids, and the reaction between 
Al and H20 produces only one form of A1203. With these assumptions, the e-relationship 
we previously developed for our CaHbNcOdAlf composition takes a much simpler form, 
and the subscript and superscript used to denote different forms of A1203 can be 
eliminated. 

To be more definitive, we denote the specific volumes of X, Al and A1203 by vx, v, and 
v2 and make two observations. The first observation is that the Ax and Ax terms disappear from 
Eq. (2.2.23) and (2.2.25) because Y_l=rx from A.7. The second is that Eq. (2.2.24) becomes 
Eg=0 because gx(V)=0 from A.7 and gAi(V)=gi(V)=0 from A.8. In this case, Eq. (2.2.25) can be 
rewritten in a simpler form as 

e=ea-q£l-q2l2+p^-±+ptoi^- (2.4.12) 
Y~l Y~l 

by setting ex=eQ , q3=ql , qA\=q2 , X3=E,VX7=Z,2 , AAlvl=B1 , Aiv2=B2 and A.B=B2~B1 . 

It is now convenient to derive the relationship between the adiabatic index k and Y- We 
consequently use the thermodynamic identiy for the sound speed and c2=kpv, which yield 

8e p +— 
. p dv 
*- = ~z— . (2.4.13) 

v oe 

and equations for the partial derivatives of e derived from Eq. (2.4.12) to obtain the equation 

We now use Eqs. (2.4.12), (2.4.14), and (the equations expressing the CJ conditions) Eqs. 
(2.4.5)-(2.4.8) to derive equations for steady state detonation parameters and, thereby, 
demonstrate the major problem we encounter in modeling nonideal detonations. 

2.4.5. The Equations for Steady State (SS) Detonation Parameters 

To derive equations for SS detonation parameters, we first combine Eqs. (2.4.14) and 
(2.4.5) to obtain an equation for the CJ volume Vj. Because Eq. (2.4.14) contains the reaction 
coordinate £2, we are immediately faced with the main problem for this type of nonideal 
detonation, namely, that of determining how far the reaction of Al with the detonation products 
has progressed at the CJ point. To account for but not solve this problem, we assume that £2J is a 
parameter to be determined and write our equation for Vj from Eq. (2.4.14) and (2.4.5) as 

yv0-(B +ABL) 
v   = _!_? ! 2J- . (2.4.15) 
; Y+l 
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The equation for (kj+1)"1 then follows by combining Eqs. (2.4.5) and (2.4.15) as 

1 vo    vo (2.4.16) 

k+1 Y
+1 

POJD
2[I+-L+—y 

and Eqs. (2.4.16) and (2.4.7) give the equation for the CJ pressure as 

^^ v0    v„   2' (2.4.17) 
D.    -         . 

1 y+1 
Equations (2.4.8), (2.4.12), (2.4.15), (2.4.16), and (2.4.17) then give the equation for the 
detonation velocity as follows. We first combine Eqs. (2.4.8) and (2.4.16) to obtain the equation 

D2 Bi   ABr   2 

e-e, =  [1+_L+_5V1   . (2.4.18) 
2(Y + 1)2 v0     v0 

We then combine Eq. (2.4.12), with jji=l and £2=£2J, and Eqs. (2.4.15) and (2.4.17) to obtain the 
equation 

[i+^2; 
 * v0    v0   

2j (2.4.19) 

(Y+1)2 Y-l 

The combination of Eqs. (2.4.18) and (2.4.19) then gives the equation for D as 

D 
_   2{f-l){ql+q2l2j) 

[lAMy1 (2-4-20> 
vo     vo 

Eqs. (2.4.15)-(2.4.17) and Eq. (2.4.20) show explicitly that the value of £2J must be known before 
SS detonation parameters can be calculated when all the other properties of the explosive 
composition are known. They also reduce to the equations for the two limiting cases of nonideal 
detonation discussed at the beginning of this section as follows. When the reaction of the Al 
with the explosive's products is very slow compared to the decomposition of the explosive, we 
can obtain the equations for the SS detonation parameters by setting £2j=0 in the above 
equations. When the reaction of the Al with explosive's products is appreciably faster than the 
decomposition of the explosive, we can obtain the equations for the SS detonation parameters by 
setting £2j=l in the above equations. 

In general, it is clear that an expression for the rate of reaction of the Al with the 
detonation products, d£2/dt, must be known before the value of £2j can be calculated and used in 
Eqs. (2.4.15)-(2.4.17) and (2.4.20) to calculate the SS detonation parameters for a nonideal 
detonation. 
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3. THE AP/Al/EXPLOSIVE GAS REACTIONS 

3.1 The Al Reaction Model 

The reaction of aluminum (Al) with air under normal ambient conditions is a well known 
phenomenon. Under these conditions a surface of pure Al will become coated with a-Al203 

(corundum), which will grow in thickness to a few tens of A in a few days. This process is 
electrolytic in nature has been extensively studied and is fairly well understood.27"36 

In this process, a battery is formed with a-Al203 playing the role of solid electrolyte. The 
A1/A1203 interface is the battery anode, and the air (02)/Al203 interface, the cathode. At the 
anode, Al+3 ions (cations) are absorbed into A1203 and migrate toward the cathode. Likewise, at 
the cathode, 0= ions (anions) may be absorbed and migrate toward the anode. A1203 is created 
through the interactions of the cations and anions. 

One can view the current inside the A1203 in terms of the movement of cation vacancies 
(hereafter called vacancies) and vacancies in the electron band of the oxide33 (hereafter called 
holes). Let \i+ and u. be, respectively, the chemical potentials of the cation vacancies and 
electron holes, and let the A1203 be an infinite slab bounded by two parallel planes a distance / 
apart. Let x be the perpendicular distance from one plane and x=0, define the the anode surface 
(the A1/A1203 interface). The cathode surface (the Al203/02 interface) is then at x=/. 

In the steady state of current flow, the number of cation vacancies passing through a plane 
perpendicular to x must be balanced by three times the number of holes passing in the opposite 
direction. 

The system is functionary a galvanic cell and obeys the same electrochemical laws. One 
therefore expects charge neutrality (or near neutrality) throughout the body of the electrolyte and, 
in addition, that the gradient of the chemical potential be balanced by the electrostatic force33'37 

that is, 
d(\i+ + 3ji_) 
  = lee , (3.1.1) 

dx 

where e is the electron charge and e the electric field. The current density j in the cell is the sum 
of two terms, j+ and j., which are equal. The current density j+ is that for cation vacancies, and j. 
for anion vacancies. The field e is related to j via Ohm's law, i.e., 

/p = e • (3-1.2) 

In Eq. (3.1.2), the resistivity p is the sum of two resistivities, p+ and p., one for cations (or 
vacancies) and one for electrons (or holes). These have corresponding conductivities a+ and o.,so 
Eq. (3.1.2) can be written 

1 1 °+
+°- 

X— + —) = e =j  . (3.L3) 
o+        o_ 0+0_ v        J 

Using this to substitute for e in (3.1.1), one can solve for current density and find 
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o+o_      d(n + +3\i_) 
(3.1.4) 3e(0++0_) dx 

The growth of electrolyte (the creation of A1203) is simply related to j by 

dl     J®e 
dt        be 

in which t is time, j/6e is half the number of cations plus corresponding holes passing through a 
unit area per unit time and Qe is the volume/molecule of A1203. Note that for o+ and a. one may 
use the basic semiconductor relationships 

°+ = 3«I+T|/+ (3.1.6) 

a- = e«-f- . (3.1.7) 

in which n± and i|/± are, respectively, the number densities and mobilities for vacancies and holes. 
Because of the neutrality requirement, n+ = n, and as will be shown further on, the derivative in 
Eq. (3.1.4) should equal (4kT/n+)dn+/dx, where k is the Boltzmann constant and T is temperature 
in °K. With these considerations, using (3.1.6) and (3.1.7) for o+ and a., (3.1.4) becomes 

4Jfc7'i|;+i|r    dn + 

J = —. ; — • (3.1.8) 3i|/++i|/_    dx v       ' 

One may properly assume t|r.»i|r+ and integrate both sides of (3.1.8) between x=0 and 
x=l to obtain 

B+(Z)-n+(0) 
j = 4kTty+  . (3.1.9) 

This expression for j contains calculable quantities on the right side and may be substituted into 
Eq. (3.1.5) to obtain the rate equation 

£. = £ 
dt       I 

(3.1.10) 

where the rate constant K is 

n(l)-n(0) 
K = 4Qm|/+ — . (3.1.11) 

6e 
Equation (3.1.10), when integrated, gives the parabolic rate law 

I2 = 2Kt . (3.1.12) 

One should note that in terms of the ionic conductivity o+, K has the form 

o\(0-o-+(0) 
K = 4QkT ;K) . (3.1.13) 

18e2 

These last four expressions are the basic model for the reaction rate of Al, which will be 
discussed and developed further in succeeding sections. 
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3.2 A Plausibility Argument Based on Existing Data 

Experimentally, Al has been reacted with oxygen both in explosive detonations38"43 and in 
controlled laboratory experiments.32 Experiments32 with flat slabs of pure Al in gaseous 02 (at 76 
torr) have been performed to temperatures above 800°K. The reaction product is on admixture of 
crystalline and amorphous Y-A1203, and the reaction rates even at the elevated temperatures are 
quite slow. The thickening of the products typically occurs at rates of a few microns per hour. 
The reaction rate constant grows with T, increasing by a factor of about 8 between 750°K and 
850°K. 

Growth rates follow a parabolic rate law until some limiting film thickness is reached. 
These thicknesses, typically 150Ä to 200Ä, increase linearly with temperature at very roughly 
0.5Aper°K. 

There are a number of relevant experiments involving aluminized explosives. These 
produce reaction results varying from partial to more or less complete reaction of Al. Some of 
this work involve AP and Al exclusively,38,6,43 and in one effort a number of test samples are 
close to the theoretical maximum density (TMD).43 In a few of the latter experiments, complete 
or nearly complete conversion of Al to A1203 is observed. Since the mean diameter of Al 
particles lies between 25^i and 30^ and the experimental time scale is of the order of lOjxsec, the 
implied linear burning rate of Al is in the range of hundreds of cm per second. This is nine 
orders of magnitude greater than the u/hour rate discussed above in the oxidation experiments 
and implies a rate constant 18 orders of magnitude greater than those observed. In the oxidation 
experiments, the reaction rate with temperature is seen to increase by a factor of about 8 over 
100°K. At this rate of eight-fold increase, a factor of 1018 is achieved after a temperature increase 
of 2000°K. Since the maximum experimental oxidation rates for pure Al are observed at 850°K, 
the rates observed in explosive reactions should be reached at about 2850°K, which is in the 
proper range for explosive reaction products. In other words, a complex temperature 
extrapolation of the oxidation data moves it into the explosive regime, and this without regard to 
the 02 pressure, which in an explosive is 106 times greater than the 76 torr in the oxidation 
experiments, further increasing the reaction rate. This, however, cannot be said of the limiting 
thicknesses of A1203 observed in these oxidation experiments. Linear extrapolation of these data 
to 2850°K indicates an increased thickness of about 450Ä, which amounts to only a few 
hundredths of lu.. Since explosive experiments do not observe such small limits, the thickness 
limits are either drastically affected by pressure or very nonlinear in temperature or both. 

Another set of seemingly relevant35 data involves the ß-aluminas, which exhibit the 
phenomenon of anomalously high ionic conduction. In structure, these are basically slabs of 
crystalline y-aluminum (about 10Ä thick) separated by a layer or layers of monovalent metal 
oxide. Within this layer are "tunnels" through which ions can move rather freely. These 
materials exhibit conductivties as high as 0.1 (Qcm)"1 at 1000°K. Using this value in (3.1.13), 
taking Qe=4.3xl0"23, and assuming o+(0)=0, one can compute K and substitute into Eq. (3.1.12) 
to find / at 10 |nsec. This yields /~70^, a value also consistent with the results of explosive 
experiments. 

All the above data can be utilized to piece together some plausible explanation of events 
in Al/explosive reactions. First of all, x-ray analysis of explosive products reveals43 oc-Al203 and 
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not the Y-A1203 observed in low pressure oxidation experiments (T<850°K). This makes some 
sense because Y-A1203 is known to transform to a-Al203 at elevated temperature, and moreover, 
cc-Al203 is the denser of the two crystalline phases and should be preferred at very high pressures. 
The x-ray analyses, however, are qualitative and do not exclude amorphous A1203 in the 
explosive products, nor do they exclude some ß-like form of y-Al203, which may accrue due to 
the presence of monovalent metal impurities. The current model will assume, therefore, that 
both cc-Al203 and some amorphous form of y-Al203 are produced in the explosive gases. The 
general A1203 products will be considered to contain tunnel structures through which Al+3 cations 
can readily pass and from which CT are excluded because of their much larger ionic radius (2.5 
times that of Al+3). The very last assumption is made with the knowledge that if significant 
reaction occured at the Al/oxide interface it would have little effect on the explosive gases 
because of the time necessary for the heat of reaction to conduct outward through the A1203 

product layer. This time is about ß/2 where ß is reciprocal diffusivity. For A1203, ß~900 
sec/cm2, so that the time for the reaction heat to pass through l|j. of product film is 9 |asec or 
about the full length of an explosive experiment. Eventually, the energy escapes, but there would 
be little effect on the overall release isentrope of the explosive gases and, therefore, on 
preformance. 

The only term in Eq. (3.1.11) that can account for the huge increase in K under explosive 
conditions is the cationic mobility i|/+. In y-Al203 (and presumably in a-Al203), this has an 
Arrhenius-like temperature dependence, which cannot explain the increase in question unless the 
activation energy itself decreases drastically. Since the activation energy is a measure of the 
energy barrier a cation must overcome to change sites, one would expect an increase in this 
barrier energy with pressure (decreasing volume) as opposed to a decrease. If barrier height, 
however, did decrease in some unusual way with decreasing volume, the relative 
incompressibility of a-Al203, which is gem-like, would prevent much change from occuring. 
The postulation of tunnels as cation conduits seems necessary to obtain lower activation energies 
for cation motion because of the relative incompressibility of oc-Al203, and because the 
temperature extrapolation discussed above is highly nonlinear (and not very credible) and leads 
us to the very highest part of the range of detonation temperatures. Al is known to react 
agressively with oxygen at much lower temperatures (but above about 1000°K). 

In summary, interpretation of the data discussed above leads to the following preliminary 
reaction model: 

1. Tunnel structures, which conduct Al+3 cations, are assumed to form naturally with the 
A1203 reaction products in detonated Al/explosive compositions. 

2. Anions are excluded from the conducting tunnels 

3. The solid reaction products are assumed to be an admixture of a-Al203, amorphous 
A1203, and, possibly, some ß form. 

3.3 Equilibrium at the Cathode and Anode 

At the anode, Al atoms enter A1203 as Al+3 ions giving 3 electrons to the A1203 bands, 
i.e., within the A1203, 
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Al * Al'3 + 3e . (3.3.1) 

At the cathode, Af3 reacts with 02 to form A1203, i.e., 

3 
6e+2A!+s + -On ** AhO,  + 2V+ + 6V_ , (3.3.2) 

where V+ represents a cation vacancy and V. a hole in the electron bands. The equilibrium in 
these reactions may be used to find the quantity n+ in Eq. (3.1.11). To simplify the process, 
subscripts will be assigned to connect the properties of a constituent with the constituent. The 
subscript e will detonate properties of A1203 (such as Qe). In addition, a, x, c, and q will 
designate properties of Al, 02, Al+3 and electrons, respectively. As before, + and - will describe 
properties of vacancies and holes. 

At equilibrium, for the reaction Eq. (3.3.1), one can write37'44 

»a = Vc + 3^9 > (3.3.3) 

where the |j, are the indicated chemical potentials. Likewise for reaction Eq. (3.3.2), one has 

3 
6V2^c+y^ = M2^6»1- ■ (3.3.4) 

From statistical mechanics,37'44 one knows that for a unit of the constituent k, 

H = -kTl»J- . (3.3.5) 
k 

where qk is the partition function per unit, Nk is the number of the units that are indistinguishable 
from one another, andNk=l if they are all distinguishable. 

In this regard, both the atoms of Al in the metal and the molecules of A1203 in the 
electrolyte are completely distinguishable because of their fixed positions. This also applies to 
the electrons in the electrolyte energy bands, which are distinguishable by their quantum 
numbers. Therefore, 

*a   =*c   =*q   =  1 (3.3.6) 

On the other hand, vacancies, holes, and 02 molecules are completely indistiguishable 
because they have neither fixed positions nor quantum numbers. Therefore, Nx, N+ and N are 
simply equal to the respective numbers of these constituents. 

The situation for cations travelling in tunnels is more complex because cations within a 
given tunnel are indistinguishable, but cations in different tunnels can be distinguished. This 
subject is treated next. 

3.4 The Partition Function Per Cation 

In travelling from anode to cathode a cation will be assumed to traverse a tunnel of 
(mean) length /t. Since the system is expected to be at high temperature, it is described by the 
semiclassical grand partition function44 
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Qc - —^T I" !e ~*H(P'q)dP^ ■■■ dPJl* ■ (3 4 1) 

Here h is Planck's constant, p,q are the momentum and space coordinates, respectively, 
ß=l/kT, w is the total number of cations, wt is the number of cations per tunnel, Nt is the number 
of tunnels, and H is the Hamiltonion. How Eq. (3.4.1) is evaluated depends on the configuration 
of the tunnels. If they are very wide and high compared to the Al+3 diameter (~ 1Ä), then the 
cation can be viewed as bouncing from the tunnel walls while traversing the length. If the width 
and/or height are relatively narrow, then the cation may be vibrating transversely in one or both 
directions while travelling the length. Along the tunnel length, there may be barriers to motion 
that must be overcome. Let the distance between barriers be s and the distance across a barrier 
be sb. Also, let the barrier height be eb. Assume, as well, that the tunnel is narrow in either or 
both of the two transverse directions and that the ion oscillates harmonically in these directions 
with frequencies vh and vw for the height and width, respectively. The number of cations wt 

within a tunnel is expected to be small relative to the number of sites of length s+sb. This being 
the case, the Hamiltonion Hc of a single cation can be written as 

2 2 
TT P A    2   2? 0 , ■ 

c =  2^ + "2    + €c + 8iq)e" ' (3A2) 
c 

where mc is the cation mass, e°c is the potential of the cation within the tunnel when in the region 
of length s between barriers, the function g(q) is zero within the region s and equals one in the 
barrier region sb, and the oscillation frequecy vq is assumed to be zero if q is in a direction of 
large tunnel width or height. 

Using Eq. (3.4.2) in Eq. (3.4.1) for a single cation, the integration can be performed over 
the three space and three momentum coordinates, yielding the integral 

Vh Vw Sl+Sö 

In this expression, the indices Vh, Vw are unity if the height h or width w of the tunnel are small 
enough to cause transverse harmonic vibrations of the cation, and are zero otherwise. One 
should also note that the ratio //(Si+sb) is just the number of sites of length s+sb within a tunnel. 
This ratio carries the integration over a single site through the entire tunnel length. 

The integral Eq. (3.4.3) is over the coordinates of a single cation. If integration is 
performed for all cations within a tunnel one obtains (Ic)

w'. Doing this for all tunnels, one 
obtains (/,) ,w'for the multiple integral in Eq. (3.4.1). Since 

w = Ntwt , (3.4.4) 

then Eq. (3.3.7) can be rewritten as 

Qc =  C-  • (3.4.5) 
(w,!)Vw 

Using the Stirling approximation 
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wt\ « w"'e 'W']/2%wt (3.4.6) 

and remembering that Ntwt=w, one finds 

Hi 
(wif * w;e-

w(2izwt)
2 (3-4-7) 

The Hemholtz energy for the cations Ac is given by 

Ac = -kT lnßc . (3.4.8) 

Substituting Eq. (3.4.7) into Eq. (3.4.5) for Qc, one finds for Ac, 

Ac = -kTw[ln—— + 1—— \n(2nwt)] . f 3 4 9) 
h3w 2w v " " > 

Since N/w«!, one can neglect the last two terms in the brackets, and Ac becomes 

IN. 
A    = -kTw ln-^-i 

C i 
h3w 

Using Eq. (3.4.10), one can obtain the chemical potential for cations from the relation 

dA 

which on neglecting small terms yields 

Relating Eq. (3.4.12) to Eq. (3.3.5), one can see that 

and 

(3.4.10) 

K - -^ - (3.4.11) 
ow 

IN, 

qc = — (3.4.13) 
h 

w 
Nc = -=™t- (3.4.14) 

t 

This completes the statistical description of cations; the development is necessary because 
it is specific to the model and has not previously been done. The partition functions of the 
remaining constituents are better understood and are given below. 

3.5. The Evaluation of the Remaining Partition Functions: qa, qe, qq, q+, q„, qx 

Subsequent to shocking, the unreacted Al is expected to be above its Debye temperature. 
So for qa, we find 

*« = (Q-) 
e       ' (3.5.1) 

c 

where 0C is the Debye temperature divided by the cube root of the base of the natural logrithm 
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and e° is the potential energy/atom of Al in the metal at 0°K (a function of volume only) plus the 
energy required to transfer three electrons to the A1203 band. For A1203, a single Debye 
temperature will be assigned to the vibrational modes per degree of freedom of the molecule (3 
associated with translation and 3 with rotation). For these acoustic modes, T is again expected to 
be greater than the assigned Debye temperature. For each of the nine remaining vibronic modes, 
an Einstein temperature 0e is assigned. This gives for qe, 

».-(frti-^]«^**. (3.5.2) 
1-e   T 

where 0e is defined in the same manner as for Al, the 6; are the nine Einstein temperatures, eb
e is 

the binding energy of the A1203 molecule, and e°e is the potential of the molecule in the A120 
lattice. 

The electron partition function q is quite simply 

■2W3 

qq = e *' (3.5.3) 

in which e° is the energy binding the electron in the A1203 band. The functions q+ and q. are' .45 

and 

q+  =Ne~^ (3.5.4) 

q.  =tf.eV-. (3-5-5> 

The quantities e+ and e° are the negatives of e°c and e°, respectively. 

The partition function qx for 02 gas is 

2%m kT 4 -RrF*+f:0i 
qx = (-^-)2 ^ ß x J • (3-5-6) 

where nix is the mass of an 02 molecule, Vx the gas volume, ex the binding energy of 02, and e° 
the nonthermal potential energy of the 02 molecule in the gas. 

3.6. The Evaluation of n+ 

Using Eq. (3.3.3), which describes equilibrium at the anode, along with Eq. (3.3.5) for the 
chemical potentials, Eq. (3.3.3) becomes 

Hr '- lnv + ln(^)3 = lni4 • (3-6.D Na Nc N
q NNl 

or since (from Eq. (3.3.6) and Eq. (3.4.14)) Na=N =1 and Nc=wt, 
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la = ^- ■ (3.6.2) 
wt 

In an entirely similar manner for Eq. (3.3.4), one has 
6    2    3/2 2    6 

ln —  = In   . 
2Ar3/2 »r2Ar6 

wt Nx N+N_ 

Setting the logrithmic arguments equal in Eq. (3.6.3) and solving for N+N^ gives 

2    6lr3/2     2 

Ar2Ar6    9eq+q-Nx wt 

(3.6.3) 

6    2    3/2 

Iqlclx 
(3.6.4) 

The quantity qc/wt may be solved for in Eq. (3.6.2) and substituted into Eq. (3.6.4), and since 
charge neutrality is specified, one can set N =3N+, with the result 

2    6lr3/2 

3-tary . Idf-i. . (3.6.5) 
"a "x 

The partition functions given in Section 3.5 may now be substituted into Eq. (3.6.5), after 
which one finds 

N*T>* (^y)6^«p[-ß(et+6:+260
++6€0_-2e:-1.56;-l.5e;)] 

(N+f =  x- 2_f  . (3.6.5) 
2nm kT   BU / x      jc.9/4 

h2 

In this, the temperatures T apply to the components indicated by the subscripts, and qev is defined 
as 

-A 
9        ^    2T 

ley   =    *     ^   ■ (3.6.6) 

1 -e ~T 

Equation (3.6.5) may be divided by V8, to convert the total numbers N into number densities n. 
Moreover, because of the gem-like quality of A1203, the quantities that depend only on the 
volume of the electrolyte can be viewed as constant even at detonation pressures. These 
quantities include the e's associated with A1203 and its enclosed ions, electrons, and vacancies. 
They may be factored in Eq. (3.6.5) into a constant along with other constants such as the binding 
energy of 02, mx, h, etc. Thus, the solution of Eq. (3.6.5) for n+ is 

fir R 1/8 
■p -fin    3/16. °a   e-. 3/4 r     P,    „   0    ,   ,   0.n     lev n+  = Yne  ^nx    (—-)m exp[-^(-2efl-1.56jc)] —- . (3.6.7) 

Or 8 *    T9132 
T 

X 

Here, p = ee+ec+2e°+6e°-1.5e* and 
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,,„ 271?« k   „,„„ r = 3-3/4(^)-^ (3 68) 

are constants. The quantity n+ in Eq. (3.6.7) is the same as n+(/) in Eq. (3.1.11) and can be 
reasonably evaluated except for the constant p, which can be experimentally determined. 
Attention is turned next to the cationic mobility i|/+. 

3.7. The Evaluation of \|/+. 

The cationic mobility is related to the velocity of cations parallel to the walls of the 
tunnels described in Section 3.4. The concepts and notation in that development are used here to 
find i|r+. 

Consider a cation situated within a tunnel site. The probability that it has a kinetic energy 
parallel to the tunnel walls with some velocity component toward the cathode, which is greater 
than the barrier height eb, is 

/ 

-Pf- 
e    2m<dp 

y/2mceb 

I 
P^ 

e dp 

(3.7.1) 

The average value of the velocity, v, in the same direction for energies greater than €b is 

kT 
-ai— 

J     m kT 
1  • (3.7.2) 

/ 

-PT- 
e    2m°dp 

2m .6, 

Tunnels are assumed to extend from anode to cathode, but are not necessarily parallel to 
the x-axis of the electrolyte. If the tunnel consists of segments forming various angles at their 
joints, the velocity in Eq. (3.7.2) must be ultimately corrected to give the value in the direction of 
the current (parallel to the x axis). For example, if lines parallel to all tunnel segments at some 
value of x form random angles with the x-axis, varying between TT/2 and -TU/2, then 4 vl%2 will 
give the average velocity with which cations pass from one site to another in the positive x- 
direction. For the moment, assume this is the case. Then the number of cations/sec per cm2, i+, 
passing through a plane perpendicular to the x-axis toward the cathode at position x is 

'+ = -r"c(*)^v • (3.7.3a) 

In the product prv, the nonintegrable numerator in Eq. (3.7.1) and denominator in Eq. 
(3.7.2) cancel. The remaining integrals are easily evaluated, giving 
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prv = (—)1/2e   kT . (3.7.3b) 
c 

If an electric field e points in the positive x-direction, the barrier heights are lowered toward 
positive x due to the electric potential. The barrier to the right (greater x) of the point x in any 
tunnel is lowered by 3ee(s+sb) relative to the barrier to the left. In this case, using Eqs. (3.7.3a) 
and (3.7.3b) the ionic current jr moving toward positive x is 

-6t+3e6(^+^) 

jr = 3eMA(—)1/2*        kT        ■ (3.7.4) 
V   27T7M 

The current toward negative x, j,, is identical, except there is no electric term in the exponential. 
The net ionic current j+ =jr+j, is, therefore, 

_e^        3ee(s+sb) 

U =3en±(J^.f2e'^[e     kT    -1] . (3.7.5) 
■K2
 2nmc 

One expects the electric potential to be small relative to kT, allowing a two-term expansion of 
the exponential. This gives 

4      kT    ,«     ~TZ  3e€(s+s.) 
j+ = SenAz(~^m e  kT ——^- . (3.7.6) 

7C2  2-Km kT 
*v C 

Because of the definition of the mobility t|j+ (the cation velocity/unit electric field), one also has 

]\ = 3enß+e . (3.7.7) 

Setting Eq. (3.7.6) and Eq. (3.7.7) equal and solving for i|/+, the result is 

*    = —(s+sJVKmJiT) me   b     . (3_78) 

This result, proportional to Tv\ is somewhat different for the usual form35 that is 
proportional to T"1. The change stems directly from the fact that the cations are allowed to move 
freely between tunnel barriers, whereas in the usual derivation, they oscillate harmonically in a 
site before jumping to the next. 

One should note that the assumed tunnel structure (random joint angles, etc.) may not be 
accurate, but differences in configurations are expected to change t|/+ only by a multiplicative 
constant. 

With Eq. (3.7.8) for \|/+ and Eq. (3.6.7) for n+, Eq. (3.1.11) for K is evaluated except for 
the quantity n+(0), which is assumed here to be negligably small. This is because for 1^(0) to be 
significant, it would require Al to be separated from A1203 at the anode with no oxygen present. 
This is a highly improbable reaction, so n+(0) will be neglected. In writing a final expression for 
K, the quantity ne has to be set equal to 1/Qe, constant terms are again grouped for convenience, 
and the electrolyte temperature Te is assigned to the expression for \|/+. The result for K is 
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^L r5/4 
r kT,    3/16   fi3/4 ^ e 1/8 8fer, ,- - Q^ 

*   =   IV        X ea   (     ,M     DIJ   lev     * '       > (3-7-9) 3/4    9/32 
a       jc 

where 

r\ = e;3/4-V+Sfc)(2™g1/2r (3.7.io) 
It 

and 

Pi = P+eb ■ (3.7.11) 

The 02 number density nx is proportional to total pressure p. Note that the 3/16 power is 
close to the 1/6 power heuristically attached to explosive experiments by Guirguis and Miller.38 

The temperature structure of Eq. (3.7.9) is unusual. If all elements were at the same temperature 
(Tf=Te=Ta=Tx), the exponential coefficient would vary as Tf32, where Tf is the product gas 
(fluid) temperature in Section 2. This will be the case in the detonation model of Section 2. 
Because A1203 forms at the Al203/fluid interface and there dissipates its excess energy, it is 
reasonable to assume the bulk A1203 and fluid temperatures are roughly equal. Moreover, at the 
A1/A1203 interface, one expects at least some small depth of Al to be at the same temperature as 
A1203. Thus, in this model, Te=Ta=Tx=Tf. 

Clearly, the derivation of Eq. (3.7.9) neglects the intermediate oxidation states of Al, 
which must occur before the formation of A1203. These have been assumed to be sufficiently 
short-lived so as to have little effect on the rate constant. This subject will be examined further 
in a future Phase II effort. 

Before leaving this subject, it should be mentioned that, for convenience, the e's in the 
exponents of Eq. (3.7.9) have been expressed in terms different from the heats of formation in 
Section 2. Nevertheless, the two are directly related, and the transformations are easily made if 
one wishes to do so. For example, the heat of formation of A1203, (Aif, )Al Q , at 0°K and 1 
atmosphere is per mole, 

,i„0, .L   0     3 ,   0       bs-, .0       b.\ 
^Hf)Aho3 = -^[^-(e^)] - (ee

+ee)l , 

where A is Avogadro's number, and the small pV terms have been neglected. 

3.8 The Al Reaction Fraction A As a Function of Time. 

The equations developed thus far for the reaction of Al have been restricted to Al slabs. 
In this calculation, identical spheres of Al are assumed in a mixture of Al and AP. Immediately 
behind the detonation front, these spheres will have radius rh, smaller than their initial radius r0. 
In the bath of hot product gas, A1203 will grow on the sphere. Let the composite sphere have 
radius R; the enclosed Al have radius ra; r be any specific radius in the composite; the current 
density in the electrolyte be j(r). 

j(r) will be dominated by the Al surface area and decrease with increasing r such that the 

52 



ENIGTR95-1 

total current is constant. That is, 

r2 

J(f) = —J\R) • (3.8.1) 
R2 

Using Eq. (3.1.8) for j(r) (with i|r.» i|/+), one has 

r2 dn
+ 

— j(R) = 4*n|r+— . (3.8.2) 
R2 dr / 

Integration of Eq. (3.8.2) between ra and R yields, after some rearrangement (and neglecting 
n+(rj), 

j\R) = 12M*i|r+——(1-— y1 (3.8.3) 
R R3 

The time derivative of the Al radius is (Qa=volume/atom of Al), 

dra Q„ r] Q 
"f = -XOT

1
 = ~—2 m -f ■ (3.8.4) 

at 3e R
2 3e 

Or, using Eq. (3.8.3) for j(R), 

drn r]   Q   UkT^nXR) r 3    , 
— = -— — ILAI (i-^-)-i . (3.8.5) 
dt R2   3e R Ri 

Using the formula for K in Eq. (3.1.11) (with n^O^O), one can write Eq. (3.8.5) in the form 

2Q 
3( -)K 

dr Q 

dt 3 
Ä(l--L) 

R3 

(3.8.6) 

From Section 2, the reacted fraction of Al is X=l-ra/r^. Therefore, 

dX = _3
r_l_ <K 

dt *    dt 
rh 

Substitution of Eq. (3.8.6) into Eq. (3.8.7) gives 

(3.8.7) 

£«1 = 18(^^1(1-^. (3.8.8) 
dt Qe       rhR Ri 

Now note that the volume increase of A1203 is Qe/2Qa times the volume change of Al. 
This leads to 

R  ~ra   = ^^-ra) ■ (3.8.9) 
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From Eq. (3.8.9) and the definition of A, one can show that 

rl Q        r 
R{\-—) = —f A— (3.8.10) 

R3        2Q„     Ä* V } 

and 

R = rhll~X+^Ql]V3 ■ (3-8-U) 

a 

Using Eq. (3.8.9) for the described quantity in (3.8.8) and replacing the resulting R with Eq. 
(3.8.11), one finally obtains Eq. (3.8.7) in the form (note r2alrl = (1 -X)m) 

2Q Q 
9(_JL)2£(1 -A)2/3[l -X+^X]m 

dX    = 
Q

e 
2Qa (3.8.12) 

*   " rlX 

With K given by Eq. (3.7.9) and 2Qa/Qe by 2NXN2 (from Section 2), this completes the rate 
equation for the Al reaction. The reaction is assumed to occur only with the 02 in the explosive 
gases. Reactions between Al and other species are expected but are considered much less 
probable because they are energetically less favorable. Except for the variation with gas 
pressure, Eq. (3.8.12) does not resemble the heuristic fit for dA/dt mentioned earlier.38 In the 
latter, dA/dt is found proportional to (1-A)'/2, which it clearly is not in Eq. (3.8.12). K, however, 
has a significant temperature and volume dependence, so in the end, Eq. (3.8.12) may show the 
observed behavior. 

The sensitivity of the reaction rate with temperature may explain the reaction delays 
directly and indirectly observed in many explosive experiments. Immediately behind the shock 
front of a detonation, the temperature may not be high enough to cause rapid reaction. 
Nevertheless, as reaction proceeds, temperatures may increase to the point of rapid acceleration 
of reaction. This type of process would generally seem like a reaction delay. 

3.9. The Reaction Rate of AP 

Consider a system composed of uniform AP spheres of radius a. At the front of a plane 
detonation wave passing through the system, the spheres will be deformed into polyhedra with no 
intervening pore spaces. Let these be approximated by spheres of radius aH. The polyhedra 
surfaces, due to friction generated at the interfaces and due to pore collapse, should be at a very 
high temperature Ts. This is assumed to cause immediate reaction at the surface with the 
production of products at temperature Tf. The unreacted molecules, at temperature T^ adjacent 
to the products, will receive thermal energy from them, but it will take a certain critical time TC 

for sufficient energy to reach the intramolecular vibrational modes of the AP molecules to cause 
reaction and produce equilibrium products. This time delay xc will precede the transmission of 
reaction from one molecular surface layer to the next. If the molecular separation is A, then the 
reaction proceeds at the rate dp/dt=-A/Tc, where p is the radius of the sphericalized polyhedra of 
unburned AP and t is time. The fraction of AP reacted at any time is A^l-pVa^. One can 
combine these last two equations to find, dA/dt, and obtain 
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d\  _ 3(1 -A/3 

dt (aH/A)xc 
(3.9.1) 

The critical time delay of TC devolves from three basic processes. The first is a process of 
heat conduction (thermal diffusion) by which energy is transferred from the product gas at Tf to 
the unreacted AP at T^, raising the temperature of the latter. The second is a thermal relaxation 
process in which energy is transferred from the acoustic vibrational modes into the vibronic 
(intramolecular) modes of unreacted AP. The third is a process by which the AP is reduced to 
products once reaction has begun. Each of these processes takes time and contributes to xc. The 
time TD for the first process is approximately ßA2, where ß is the reciprocal of the diffusivity of 
AP. At standard temperature and pressure (STP), ß=601 sec/cm2 and A-5.8A0, which makes TD 

of the order of 2 ps. This time is too small to govern the reaction rate of AP, which in 9(i-sized 
particles is known6 to react in about 0.5 usec under detonation conditions. If TC were equal to TD, 

this reaction would occur in 15 ns. One should therefore expect that the unreacted AP adjacent 
to product gas reaches highly elevated temperature well before reaction proceeds to products. 

The second process is governed by a relation of the type46 

T        x2 

Tc-TAp = V&Tf (-f)
5-1 -£ , (3.9.2) 

02        o! 

where Tc is some critical temperature associated with the energy an AP molecule must reach 
before reaction begins promptly (in say less that 1 ps). 0 is the Debye temperature of the acoustic 
modes in AP, ö is the ratio of the Einstein temperature of the lowest frequency vibronic mode, 
0E, to 0(i.e., 8=0E/0), and £ is a constant characteristic of AP. 

When both sides of Eq. (3.9.2) are multiplied by k, and uR is replaced by t, it represents 
the energy poured into the lowest frequency vibronic mode in time t by a neighboring molecule at 
temperature Tf. The process stops when the energies are in balance. One expects this relatively 
slow process to determine the rate at which energy transfers into vibronic modes. 

For 6! in Eq. (3.9.2), one may use the Stirling formula, which is reasonably accurate even 
for 6=1. So set 

ö! = bbe -\2%b)m . (3.9.3) 

The temperature 0E in delta may be determined from spectral data on AP, and 0, which varies 
with volume, can be expressed in terms of the Gruneisen parameter ya for the highest frequency 
AP acoustic modes. By definition, 

-rf(ln0) 

When integrated, this gives 

0 = 0O exp[-| -±- dvAP] . (3.9.5) 
v„     VAP 
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Reasonable expressions47-48 for ya may be derived from the equation of state of AP.11 Thus, ö and 
0 can be determined as a function of v^. 

Solving for TR in Eq. (3.9.2), using Eq. (3.9.3) for 6!, one has 
C     1/2 

\ = -^T [6&e "5(27r6)1/2 (-)5 T-^L\m ■ (3.9.6) 0 Tf Tf 

This represents the time required for a molecule of AP at T=Tpj, to react when adjacent to 
molecules at T=Tf. The quantities £ and Tc are constants related to AP only and must be 
experimentally determined. It should be noted that the relation Eq. (3.9.2) is classically 
developed.46 Except for a multiplicative constant (near 1), the quantum mechanical analogue is 
identical. 

The third process contributing to TC involves the time xe necessary for reaction to 
proceed to equilibrium products at Tf, when the average molecular temperature is sufficient to 
initiate reaction at the beginning of the process. This time should be some multiple of the time it 
takes a molecular fragment to collide with another molecule. In AP at STP, the separation 
between molecules is about 5.8A, but the molecules themselves have dimensions (sphericalized 
diameters) of about 3.36 A. So the average distance to collision for a fragment is about 2.5Ä at a 
velocity of roughly (kTj/mf)'

/2, where mf is the fragment mass. 

Taking Tf to be (a conservative) 1000°K, the time between collisions for, say, an NH4 

fragment is about 0.4 ps. If ten collisions are required to convert the fragment components into 
parts of equilibrium products, then only 4 ps is the requisite time. In view of this, it seems 
reasonable to assume that the first and third processes contributing to xc are small compared to 
the second, which is in the approximate range 10-120 ps25'49 and that xc can be represented by 

R (3.9.7) 

where T'= TD+T6 and is treated as a constant with a value between about 2 ps and 10 ps. 
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4. CONCLUSIONS AND SUMMARY 

4.1. Technical Results 

Theoretical work was performed to formulate a first generation model for nonideal 
detonation that is based on fundamental physical principles and can be used to investigate the 
nonideal detonation process in explosive compositions containing Al. 

In the portion of this work presented in Section 2, we formulated the thermo- 
hydrodynamics that is needed to treat reacting AP/A1 and CHNO/A1 compositions and account 
for the decomposition of these explosives and the subsequent reactions of their products with Al. 
We also considered the relationship between the steady-state reaction zone length and reaction 
time in AP, and developed a prototype model for steady-state, nonideal detonation in a CHNO/A1 
composition. 

In our Phase I approach to reactions in these AP/A1 and CHNO/A1 compositions, single- 
reaction coordinates were used to describe the decompositions of the AP and the CHNO 
explosive, and a single reaction coordinate was used to describe the reactions of their products 
with Al to form either o^Al203 (corundum) or amporphous Y-A1203. The second reaction 
coordinate for the AP/Al composition was assigned to the reaction of Al with 02; the second 
reaction coordinate for the CHNO/Al composition was assigned to the reaction of Al with H20 
and C, with the H2 produced from the H20 reacting with the C to form C2H6. Although these 
reaction schemes are clearly limited, they are more realistic than some empirical treatments of Al 
reactions in hydrocodes, because they account explicitly for the conservation of mass as the Al 
removes oxygen from the detonation products. 

The mass-balance equations for these reaction schemes were used to construct 
constitutive equations for the specific internal energies of our reacting AP/Al and CHNO/Al 
mixtures, with each of their components governed by its own equation of state (EOS). 
Generalized Mie-Gruneisen equations of state were used to describe the condensed components, 
and the fluid detonation products were assumed to be polytropic for convenience. Because heat 
conduction was not treated explicitly in constructing these constitutive relationships, assumptions 
were required for their closure. Assumptions were made, (1) that no appreciable amount of heat 
is transferred into the interior of explosive and Al grains, and (2) that the heat transfer process 
between the A1203 covering the Al grains and the detonation products is efficient. As a result of 
the first assumption, burning explosive and reacting Al grains in an expansive flow behind the 
shock are constrained to their own isentropes and can adequately be described by their respective 
energy, pressure, volume equations of state. As a result of the second assumption, the A1203 and 
detonation products attain thermal equilibrium and the temperature equations of state of these 
components are required to formulate this condition. 

Equations of state for the components in our reacting AP/Al composition were 
constructed to make our constitutive equation for this system practical. Our equation of state for 
Al was based on the Morse potential, and with values of the latent heat of vaporization, the 
specific heat at constant volume, and the Gruneisen parameter for Al from the literature, predicts 
shock wave states that are in excellent agreement with those determined experimentally up to 
400 kbar. No equation of state was constructed for liquid Al, however, because melting of 
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condensed components was excluded from our first-generation model. 

The equation of state for AP was based on shock wave and velocity of sound data and the 
assumption that its specific heat at constant volume and its Gruneisen parameter are constants. 
The unexpected high values for shock temperature calculated in the 300-400 kbar region, 
however, suggests that the validity of these assumptions must be considered in any future work 
on AP/A1 compositions. 

The first generation EOS, constructed for a-Al203 and amorphous Y-A1203, were based 
on shock-wave data for corundum and the assumptions that these oxides behave as linear elastic 
materials with constant specific heats at constant volume and constant Gruneisen parameters in 
the pressure range of interest. Literature values of the density, the standard heat of formation and 
standard entropy for a-Al203, and of the densities and standard heats of formation of amorphous 
y-Al203 were used to evaluate Gibbs free energies at different pressures, and thereby obtain an 
estimate of the standard entropy of amorphous y-Al203 and formulate a criterion for the 
formation of either a-Al203 or amorphous y-Al203 in our reacting AP/A1 mixture. It is important 
to note here that this description of A1203 is preliminary and needs to be improved in any future 
work that includes melting. 

Our construction of a temperature equation of state for the polytropic fluid component 
was based on a complete equation of state, which provides the specific energy relationship 
already used for the detonation products, the thermodynamic identities for temperature and 
pressure, and the assumption that the specific heat at constant volume is constant. Here again the 
description of the fluid component must be improved in any future work on AP/A1 and 
CHNO/A1 compositions. 

Certain aspects of steady-state detonation were considered to provide a better 
understanding of the dependence of the nonideal detonation process on reaction rates. Equations 
for estimating upper and lower limits for a steady-state reaction zone length were derived; shock 
wave data and the results of a TIGER code calculation for AP were used to obtain equations for 
the upper and lower limits of its reaction zone length in terms of its reaction zone time. Our 
prototype model for steady-state nonideal detonation was obtained by subjecting our previous 
treatment of the CHNO/A1 composition to simplifying assumptions about the condensed 
components. The equations, derived for Chapman-Jouguet parameters in terms of the reaction 
coordinate describing the reaction of Al with detonation products, demonstrate clearly the 
dependence of steady-state nonideal detonation on this reaction and the reason for developing a 
realistic expression for its rate. 

In the portion of our theoretical work presented in Section 3, we formulated rate 
expressions for the oxidation of Al and the decomposition of AP, which are needed to model 
nonideal detonation in our AP/A1 compositions. 

For the derivation of the rate equations for the Al reaction, the Al/Al203/02 system is 
treacted as a galvanic cell in which Al ions at the A1/A1203 interface are injected into the A1203 

electrolyte and migrate toward the Al203/02 interface where A1203 is created. 

In the construction of the rate model, it is assume that at the high pressures and 
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temperatures attained during the detonating process, ß-Al203-like materials are present, which 
are known to exhibit anomalously high ionic conductivity because of the formation of tunnels 
through which ions can more easily pass. The equations describing the reaction process are 
presented and the rate constant, ionic conductivity, and mobility are calculated. This results in a 
rate constant that is an Arrhenius term multiplied by a factor proportional to T7/32p3/16. 

It is concluded that 

a. A1203 forms primarily at the Al203/02 interface. This is based on the excessive time it 
would take for the heat of reaction to diffuse from the A1/A1203 interface into the fluid products 
of the AP reaction. 

b. Tunnels as ion conduits (or some similar scheme) are necessary in order to account for 
the high conductivity required to produce the observed reaction rates. 

The reaction rate of AP is thought to be dominated by thermal relaxation processes, the 
volume and temperature dependences of which are estimated. The time it takes for energy to 
transfer from the acoustic vibrations of the AP molecule into its vibronic modes is seen to be 
long compared to other processes. It is assumed that reaction begins with the excitation of 
vibronic modes and that the thermal relaxation time is governed by energy transfer from acoustic 
modes into the lowest frequency vibronic ("doorway") mode from which energy is fed much 
more quickly into other vibronic modes. 

The time necessary to excite a critical vibronic mode therefore is inversely proportional to 
the rate at which energy enters the doorway mode. This rate is dependent on the ratio of the 
doorway frequency to the highest frequency of the acoustic modes and is a minimum if the ratio 
is one. The rate is also volume-dependent because of the change of the acoustic mode 
frequencies with volume. 

The rate equations developed here for the production of both A1203 and the explosive 
products of AP are not especially specific to these substances. They should apply as well to a 
number of explosives, oxidizers, and metals when appropriate substitutions for the values of the 
key parameters are made. 

4.2. Summary of Progress vs. Proposed Tasks 

The work described in Sections 2 and 3 of this report followed in general along the lines 
described in the Phase I Scope of Work in our proposal of 14 July 1994, but deviated in some 
important ways. 

Task 1 of the Scope of Work sought to "develop a preliminary model for transport and 
kinetics mechanism[s] that determine the energy conversion and energy release rates in a totally 
nonideal explosive, such as an AP/A1 mixture,..." Section 3 of this report describes a theoretical 
model of the kinetics of the AP, Al, and A1203 interactions, which is far more complex and 
sophisticated, albeit preliminary, than attempted previously. The heat conduction processes are 
handled implicity in both Sections 2 and 3. 
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Task 3 sought to "examine different equations of state models as candidates for 
representing the products of metal/fuel/oxidizer/CHNOF explosive mixtures and metal 
fuel/oxidizer mixtures ..." Inasmuch as only an AP/A1 mixture was to be considered (by Task 1), 
the most important detonation products are N2, 02, H20, Cl2, and a- and amorphous A1203 

(solid). Section 3 contains the equations of state, both E,P,V and T,P,V, derived for A1203. 
Equations of state for Al and AP as well as polytropic equations of state for CHNO detonation 
products that react with Al are also derived. 

Task 2 was to "insert the preliminary model of Task 1 into a hydrodynamic code and 
calculate the failure diameter of a charge..."; Task 4 was "use a 1-D hydrocode to calculate the 
underwater bubble expansion to the first maximum...using the results from Tasks 1 and 3 ..." 
Early on, we started work on Task 4 but quickly dropped it, as well as Task 2. We decided to 
dedicate almost the entire effort to the much more important problems of developing the physical 
models of the kinetics of the AP/A1 reaction, the development of the needed temperature 
equations of state for reactants and products, particularly to accomodate our assumption that the 
A1203 and detonation products are in thermal equilibrium, and to describe a phenomenological 
model based on fundamental physical principles. 

The insertion of the physical models developed in Phase I into hydrocodes has been 
deferred to Phase II because of time constraints. 

4.3. Recommendations. 

The thermo-hydrodynamic model presented in this report is based on fundamental 
physical principles and provides a firm foundation for a first-generation hydrocode for 
investigating the nonideal detonation process in explosives containing Al. In addition, it is more 
realistic than many currently used in hydrocodes because, (1) untenable assumptions, such as the 
attainment of thermal equilibrium in the reacting explosive mixture, have been removed, and (2) 
the need for empirical fits of the rate equations has been eliminated. Nevertheless, our thermo- 
hydrodynamic model is clearly limited by restrictive assumptions, imposed by Phase I time 
constraints. 

Proposed tasks for a Phase II program, which follow naturally from the work performed 
in Phase I and are needed to remove the latter's restrictive assumptions, are listed below: 

1. Incorporate the first-generation model into a hydrocode, and validate it by performing a 
series of 1-dimensional, hydrodynamic calculations for AP/A1 mixtures and comparing their 
detonation velocities with experimental data. 

2. Extend our treatment of AP/A1 and CHNO/Al compositions by including porosity. 

3. In parallel with other recommendations above and below, incorporate as modules into 
an existing 2-dimensional flow hydrocode, e.g., CALE, the first- and subsequent-generation 
models, perform calculations for AP/A1 and AP/CHNO/A1 mixtures, and compare their results 
with experimental data available from Moby-Dick experiments at NSWC and underwater 
detonation experiments, including the bubble oscillation phase. 
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4. Extend the reaction schemes developed for AP/A1 and CHNO/A1 compositions in 
Phase I, by including the reaction of Al with H20 in the AP/A1 system and the reaction of Al with 
C02 in the CHNO/A1 system. 

5. Examine the mechanism of heat transfer in reacting explosive mixtures containing Al, 
with particular emphasis on late time. 

6. Remove the restrictive assumptions that the values of Cv and V are constants for 
unreacted explosives and then construct more realistic EOS for unreacted AP and a prototype 
CHNO explosive. 

7. Improve the equations of state of a-Al203 and amorphous y-Al203 and formulate, 
based on Gibbs free energy considerations, a more basic criterion for the conversion of one into 
the other. 

8. Consider melting of Al and A1203 in the reacting AP/A1 and CHNO/Al mixtures. 

9. Replace the polytropic EOS for the fluid detonation products by a more fundamental 
EOS based on statistical mechanics of the type developed and implemented by F.H. Ree, W.B. 
Brown and H.D. Jones and F. Zerilli. 

10. Extend our thermo-hydrodynamic modeling to reacting AP/CHNO explosive/Al 
mixtures. 

11. Investigate the intermediate oxidation states of Al, e.g., A1202 and A102, to ascertain 
if other Al oxides are formed in rate controlling steps in the formation of A1203. 

12. Include secondary oxygen sources, such as H20, and C02, in the reaction rate 
expression for Al, and consider its oxidation by chlorine. 

13. Examine the effect of replacing Al with another metal. 
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APPENDIX A. A MODEL FOR STEADY-STATE REACTION ZONE (SSRZ) TIMES 

Our treatment of steady-state (SS) detonation here is based on the hypothesis that the 
global decomposition of a conventional condensed explosive is pressure dependent. In this case, 
it is significant to consider how SSRZ times are governed by an explosive's pressure-dependent 
burning rate because the classical treatment of the dependence of the SSRZ on particle size is 
based on the assumption that the explosive burns at a constant rate. Accordingly, we develop a 
prototype model for a SSRZ in order to investigate the relationship between an explosive's SSRZ 
time and its burning rate. To provide the necessary background for this development, we first 
present the conservation equations and Chapman-Jouguet (CJ) conditions for a SS detonation 
wave. 
Equations for a SSRZ 

We use the subscripts x and/? to denote the explosive and its products, the subscript H to 
denote the shocked state, and either a superscript or a subscript 0 to denote the standard state of 
the explosive and the detonation products, i.e., at pressure p0 and temperatures T0. Recalling that 
the Rankine-Hugoniot (RH) jump conditions are first integrals of the differential equations 
expressing the conservation laws when the flow has attained a SS, we write the equation 
governing our SSRZ as 

p(D-u)=PoD, (A.l) 

p=p0D
2(l-v/v0), (A.2) 

e-e0=pv0(l-v/vo)/2, (A.3) 

with D and u used, respectively, to denote the detonation velocity and the particle velocity, and 
Po^O. Equation (A.l) expresses the conservation of mass, Eq. (A.2) expresses the conservation 
of mass and momentum, Eq. (A.3) expresses the conservation of mass, momentum, and energy, 
and the equations governing the shock at the front of the SSRZ are obtained by putting a 
subscript Hon the variables p,u,p,v and e in Equations (A.l), (A.2), and (A.3). 

To continue this treatment of our SSRZ, we introduce the sound speed c, define the 
adiabatic index k by the equation, c2=kpv, and recall that the SSRZ terminates at the CJ state 
where the flows become sonic. Using the subscript y to denote the CJ state, this sonic condition 
is expressed by the equations 

D-UJ=CJ. (A.4) 

The combination of the equations p^pJD, c2j=kpjVj, and Eq. (A.2) written for the CJ state then 
gives the well known equations for v,u,c, and p in the CJ state as 

Vj/v0=k/(kj+l), (A.5) 

kjUj=Cj=Dk/(kj)rl), (A.6) 
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pj=p0D
2/(kJ+l). (A.7) 

We finally note that the relationship between D and the specific chemical energy q 
liberated by a particle passing through the SSRZ is derived by combining the e=e(p,v) equation 
of state for the detonation products with the following equation: 

ej-e0=D2/2(kj+l)2 (A.8) 

obtained by combining Eqs. (A.5) and (A.7) with Eq. (A.3) written for the CJ state. 

Calculations of SSRZ Times 

For the sake of tractability, we assumed that the shocked explosive is incompressible with 
a volume v=vH and a Gruneisen parameter r=v(dp/dej. In this case, with X used to denote the 
mass fraction of decomposed explosive, we can write the mixture rules for the specific volume 
and specific energy of the explosive and its products as 

v=(l-X)v+Xvp (A.9) 

e=(l-X)ex+Xep (A. 10) 

With the added assumption thatpx=pp-p, the e=ex(p,v) and e=ep(p,y>^) equations of state are 
then required to derive a constitutive equation for e in terms of p,v, and v. We write the equation 
for er as 

r      2 r v, e- - «-   = '— +   [!-(!+-)—] ■ (A.ll) 
o 

We assume, again for tractability, that the explosive's products are polytropic with an index y 
and write the equation for ep as 

g
P
=eP +—T- (A-12) 

The combination of Eqs. (A.9)-(A.12) allows us to write the constitutive equation for e for our 
decomposing explosive as 

e  = el  - Xq  + JP-  + (1 -X)v0[^-  + ^] (A.13) 

with the specific heat of decomposition q = -{ep -ex), V=((y -\)/T-l)v/v0, and 

<4>=l -(l+2/r)v^/v0. 

It is now convenient to derive the relationships between k and y and D2 and q. We first 
use the thermodynamic identity for the sound speed and c2=kpv, which yield 
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de p + T 
k~ = —ä  ' (A.14) v de v        J 

and the equations for the partial derivatives of e derived from Eq. (A. 13) to obtain the equation 
relating k and y as, 

yv k = 
,1   ^   r7 * (A.15) 

Setting k=kj and v=Vj in Eq. (A.15) when X=l, then shows that kj=y at the end of the reaction 
zone. Combining the equations obtained by setting kj=y in Eq. (A.8) and setting X=\, e=ep 

V=VJ=YV0 /(Y+1), and pj=p0D
2/(y+l) in Eq. (A.13) gives the well-known equation relating D and 

D2 = 2(y2-l)q . (A.16) 

The equations, relating A and v and A andp in the SSRZ, can now be derived from Eqs. 
(A.2), (A.3), (A.13) and (A.16) as follows. We substitute the expressions forp and q from Eqs. 
(A.2) and (A.16) into the equation obtained by eliminating e-e\ between Eqs. (A.3) and (A.13) to 
derive, after some manipulation, the following equation relating X and v in the SSRZ: 

[Y-(Y+1)~]2 

1  A " — ■ (A.17) 
l+2(Y+l)F(l--)+(Y2-l)<Kl-—) 

vo vo 

The more interesting equation for our purpose here, that relates X andp in the SSRZ, is obtained 
by combining Eqs. (A.17) and (A.2) as 

1-1- ^"1)2 -**-.**>. 

1+2^+(Y-1)(D^ P'     P< (A'18) 

Pj Pj 

Because Eq. (A. 18) will be used to calculate SSRZ times, it is convenient to consider a 
typical condensed explosive so that different values of V can be used to evaluate the parameters 
Fand (J). We consider a typical explosive with the parameters: p0=l .76 g/cc, D=1A mm/usec, 
y=3, pj = 240.9 kbar,^^300kbar and vH/v0=0.6887. The two cases, when V=0 and (j)=0, are of 
particular interest here. When V=0 and r=Y"l=2, Eq. (A. 18) becomes 

1_A  (A.18.1) 
1-/^ 

PJ 

with a=0.7548, and when, §=0 and T-4.425, Eq. (A. 18) becomes 
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1   i        pJ l-X = ^-—- (A.18.2) 

Pj 

Before we can derive an equation for SSRZ times, we must specify an expression for the time 
rate of decomposition of the explosive, dA/dt, in terms of the state variables, where t is the time. 
Here, we assume that our shocked, incompressible explosive grains are spherical, have an initial 
radius i?„ and burn with a pressure-dependent rate governed by the equation 

dR „ 

with n a variable parameter. In this case, the equation relating X to the grain radius R is, 

R 

R 
X ~ l"(—)3 > (A.20) 

and the equation for the rate of decomposition follows by differentiating Eq. (A.20) as 

dX  _     3 ,R^2dR 
~It = -Jtf Tt ■ (A-21> 

The combination of Eqs. (A.21), (A.20), and (A.19) then gives the equation for the rate of 
decomposition of our explosive in terms of A, and/? as 

=j- = -2-0-*)Xp". (A.22) 
dt       R. ^ 

We now use Eq. (A.19) to define the characteristic time ccn as 

1    - Ay"   -     '-A (A.23) 
a R. R.   dt 

and rewrite Eq. (A.22) as 

dX  _ Hl-W^y^y (A.24) 
dt a PH    PJ 

Our general procedure for calculating SSRZ times is to integrate the expression for dt/dp 
in the SSRZ, obtained in terms ofp from Eq. (A. 18) and (A.23), from p/p/=Pf/Pj to p/pj= 1. Here, 
we will exemplify this procedure for the case when V=0. When V=0, we equate the expression 
for dÄ/dt, derived by differentiating Eq. (A. 18.1), and the expression for dA/dt, derived by 
combining Eq. (A. 18.1) and (A.23) to eliminate (1-A)%, to obtain the following equation for 
dp/dt in the SSRZ: 
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{PH_fdp_    =   j^.j^y, 
I    P.    <ft        oc„ p.        p. (A25) 

[1 -a—] 
Pj 

Formally integrating Eq. (A.25), with P=p/pj and PH=pI/pj, gives the equation for the SSRZ time 
r„as 

a, i J 1 I   " ' (A.26) 
3(l-aPff)

3  ^ />"(P-1)3        3(l-aPff)
3 

where 7„ is the integral in Eq. (A.26). Combining Eq. (A.23) and (A.26) gives the equation 

2/?.. I 

I \ (A.27) 
3(p/(l-a/>„)3 

which allows us to calculate A„ when i?, and n are known and the SSRZ parameters/^, pjt and ^„ 
are also known. 

We now set n=\ and evaluate 7, to determine the relationship between t, and ax. To 
reduce Ir to a more recognizable form, we change the variable from P to y by settingy"-P-l, and 
then set m=3 to obtain the equation 

h =3 
o 

J> dy r  y ay 

1 T^T' (A-28) 

where ^=(^1)^=0.6258. We now use 

ry dy 1,    (\+yf      1 4    -i,2y-l, 

to evaluate this integral between >v=0.6258 andy=0, and find the following equation relating t, 
and ccji t1=\.\37cc1. 

We now set n=2 and evaluate the integral 

/   =  )       dP 2     J i (A.30) 
^   p2(p_1)3 

to determine the relationship between t2 and a2. An operation using integration by parts, 
separation by partial fractions, and the change of variable y3=P-\ allows us to write an equation 
for I2 as 

2 

I   = -(fg~1)3   + !l_ . (A.31) 
2 /> 3 
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Equations (A.26) and (A.31) then give the following equation relating t2 and a2: t2=l.30a2. 

It is clear that the results of these calculations are limited by our simple description of the 
explosive and its products. Nevertheless, they are significant for an explosive with a pressure 
dependent, decomposition rate because they show that the parameter An in its rate law can, in 
principle, be determined when n, the initial grain size, the ZND spike pressure, and the SSRZ 
time are known. 
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